如何使用自定义训练的Keras模型进行预测

我是一个TensorFlow的新手。我已经按照一些教程学习,并完成了我的第一个多类分类模型。

我不确定我的层设计是否合理,但无论如何,测试集上的准确率大约是0.98。

问题是我无法用我的模型预测新的输入。以下是我使用的代码和训练模型的数据。

数据有10列,最后一列是类别名称。模型的目的是使用一行9个值来预测该行属于哪个类别。

所有代码都在colab中运行的。

!pip install sklearnimport pandas as pdimport numpy as npimport tensorflow as tffrom tensorflow import feature_columnfrom tensorflow.keras import layersfrom tensorflow.keras import Sequentialfrom sklearn.model_selection import train_test_splitindex_col = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'r']dataframe = pd.read_csv('drive/MyDrive/Book2.csv', names=index_col)train, test = train_test_split(dataframe, test_size=0.2)train, val = train_test_split(train, test_size=0.2)train_labels = train.filter('r')train = train.drop('r', axis=1)test_labels = test.filter('r')test = test.drop('r', axis=1)model = tf.keras.Sequential([    tf.keras.layers.Dense(1),    tf.keras.layers.Dense(100, activation='relu'),    tf.keras.layers.Dense(4)])model.compile(optimizer='adam',    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),    metrics=['accuracy'])model.fit(train, train_labels, epochs=20)test_loss, test_acc = model.evaluate(test,  test_labels, verbose=2)result = model.predict(pd.DataFrame([1, 3, 0, 3, 3, 1, 2, 3, 2]))

这是我得到的控制台错误信息。

---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-29-942b3f127f67> in <module>()----> 1 result = model.predict([1, 3, 0, 3, 3, 1, 2, 3, 2])9 frames/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)    984           except Exception as e:  # pylint:disable=broad-except    985             if hasattr(e, "ag_error_metadata"):--> 986               raise e.ag_error_metadata.to_exception(e)    987             else:    988               raiseValueError: in user code:    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1569 predict_function  *        return step_function(self, iterator)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1559 step_function  **        outputs = model.distribute_strategy.run(run_step, args=(data,))    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1285 run        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2833 call_for_each_replica        return self._call_for_each_replica(fn, args, kwargs)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3608 _call_for_each_replica        return fn(*args, **kwargs)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1552 run_step  **        outputs = model.predict_step(data)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1525 predict_step        return self(x, training=False)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:1013 __call__        input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)    /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/input_spec.py:255 assert_input_compatibility        ' but received input with shape ' + display_shape(x.shape))    ValueError: Input 0 of layer sequential_2 is incompatible with the layer: expected axis -1 of input shape to have value 9 but received input with shape (None, 1)

Book2.csv文件在这里


回答:

你传递给predict的dataframe形状为(9,1)。它的形状应该像你传递的训练数据集的形状(除了第一维度)。

简单地转置你的数据,将形状从(9,1)更改为(1,9)

result = model.predict(pd.DataFrame([1, 3, 0, 3, 3, 1, 2, 3, 2]).T)

补充说明:(9,1)表示9个样本,每个样本有1个特征,这与你的模型期望不符。但(1,9)表示1个样本有9个特征。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注