我训练了一个模型并得到了不错的AUC值。现在,我想对完全新的数据进行预测,但我不确定该怎么做。有人能帮我吗?
# fit model no training datamodel = XGBClassifier()model.fit(X_train, y_train)# make predictions for test datay_pred = model.predict(X_test)predictions = [round(value) for value in y_pred]#evaluate predictions train vs test dataaccuracy = accuracy_score(y_test, predictions)print("Accuracy: %.2f%%" % (accuracy * 100.0))
现在,我有了一组全新的数据,我想用这个模型对其进行评分。我该怎么做?是使用predict.proba()方法吗?
回答:
只需拟合新数据
NEW_DTA = pd.read_csv(data)New_y_test = NEW_DTA.iloc[:,-1]New_x_test = NEW_DTA.drop(colums='Target')New_pred = model.predict(New_x_test)