我需要获取随时间变化的损失历史,以便在图表中绘制。以下是我的代码框架:
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, method='L-BFGS-B', options={'maxiter': args.max_iterations, 'disp': print_iterations})
optimizer.minimize(sess, loss_callback=append_loss_history)
append_loss_history
的定义如下:
def append_loss_history(**kwargs):
global step
if step % 50 == 0:
loss_history.append(loss.eval())
step += 1
当我查看ScipyOptimizerInterface
的详细输出时,损失确实随时间减少。但当我打印loss_history
时,损失值几乎没有变化。
参考文档:“在优化结束时,受优化影响的变量会就地更新”https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface。这是损失值不变的原因吗?
回答:
我认为你已经找到了问题所在;变量本身在优化结束前不会被修改(而是被馈送到session.run调用中),评估一个“后台通道”张量会得到未修改的变量。相反,可以使用optimizer.minimize
的fetches
参数,利用带有指定馈送的session.run
调用来获取更新后的值:
import tensorflow as tf
def print_loss(loss_evaled, vector_evaled):
print(loss_evaled, vector_evaled)
vector = tf.Variable([7., 7.], 'vector')
loss = tf.reduce_sum(tf.square(vector))
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss, method='L-BFGS-B',
options={'maxiter': 100})
with tf.Session() as session:
tf.global_variables_initializer().run()
optimizer.minimize(session,
loss_callback=print_loss,
fetches=[loss, vector])
print(vector.eval())
(修改自文档中的示例)。这将打印出更新后的张量值:
98.0 [ 7. 7.]
79.201 [ 6.29289341 6.29289341]
7.14396e-12 [ -1.88996808e-06 -1.88996808e-06]
[ -1.88996808e-06 -1.88996808e-06]