我有一个自己的感知机分类器实现,并希望使用sklearn的GridSearchCV来调整其超参数。我尝试编写一个包装器来实现Estimator接口(阅读了https://scikit-learn.org/stable/developers/develop.html),但当我运行GridSearchCV(wrapper, params).fit(X,y)
时,出现了以下错误:
FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:AttributeError: 'NoneType' object has no attribute 'fit' FitFailedWarning)Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py", line 738, in fit **self.best_params_)) File "C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py", line 67, in clone % (repr(estimator), type(estimator)))TypeError: Cannot clone object 'None' (type <class 'NoneType'>): it does not seem to be a scikit-learn estimator as it does not implement a 'get_params' methods.
这个错误与如何在sklearn中编写自定义估计器并对其使用交叉验证?完全相同,但我已经做了顶级评论中提出的所有建议。
我确信模型是正确的。以下是模型包装器的代码:
from models import Perceptron, Softmax, SVMfrom sklearn.model_selection import GridSearchCVclass Estimator(): def __init__(self, alpha=0.5, epochs=100): self.alpha = alpha self.epochs = epochs self.model = Perceptron() def fit(self, X, y, **kwargs): self.alpha = kwargs['alpha'] self.epochs = kwargs['epochs'] self.model.alpha = kwargs['alpha'] self.model.epochs = kwargs['epochs'] self.model.train(X, y) def predict(self, X): return self.model.predict(X) def score(self, data, targets): return self.model.get_acc(self.predict(data), targets) def set_params(self, alpha, epochs): self.alpha = alpha self.epochs = epochs self.model.alpha = alpha self.model.epochs = epochs def get_params(self, deep=False): return {'alpha':self.alpha, 'epochs':self.epochs}
回答:
如文档的这一部分所解释的,您应该从BaseEstimator派生类class Estimator(BaseEstimator):
,以避免重复代码并遵循fit predict结构。正如@Shihab在评论中所说,您的fit函数缺少return self
代码行。
另外,在get_params()中,我不知道您是否有意为之,但文档中推荐的参数deep默认应设置为deep=True
。请检查一下。