如何连续训练Keras模型

我正在尝试连续训练不同的模型,而不需要每次都重新运行我的程序或更改我的代码,这样我就可以让我的电脑训练不同的模型。

我使用for循环从字典中提取不同的信息来构建每次不同的模型,这样每次调用函数时就可以训练一个新模型,用于在不同设置下测试准确性,以了解在每种情况下哪个模型表现最佳。

def create_model(modeltoload):    model = Sequential()    previsores, alto, baixo, fechado, aberto = get_train_data(modeltoload)    if modeltoload['Type'] == 'LSTM':        if len(modeltoload['Layers']) == 1:            model.add(LSTM(units=modeltoload['Layers'][0], activation='tanh',                           input_shape=(previsores.shape[1], modeltoload['Entry'])))            model.add(Dropout(0.3))        else:            model.add(LSTM(units=modeltoload['Layers'][0], activation='tanh', return_sequences=True,                           input_shape=(previsores.shape[1], modeltoload['Entry'])))            model.add(Dropout(0.3))        for i in range(1, len(modeltoload['Layers'])):            if i == (len(modeltoload['Layers'])-1):                model.add(LSTM(units=modeltoload['Layers'][i], activation='tanh'))            else:                model.add(LSTM(units=modeltoload['Layers'][i], activation='tanh', return_sequences=True))        model.add(Dense(units=1, activation='relu'))    if modeltoload['Type'] == 'DENSE':        model.add(Dense(units=modeltoload['Layers'][0], activation='relu', input_dim=modeltoload['Entry']*5+1))        model.add(Dropout(0.1))        for i in range(1, len(modeltoload['Layers'])):            model.add(Dense(units=modeltoload['Layers'][i], activation='relu'))            model.add(Dropout(0.1))        model.add(Dense(units=1, activation=modeltoload['Activation']))    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy'])    return model

然后

def train_model(modeltoload):    previsores, classe, baixo, fechado, aberto = get_train_data(modeltoload)    model = create_model(modeltoload)    history1 = model.fit(previsores, classe, epochs=1000, batch_size=modeltoload['Batch'],                         callbacks=[es, rlr, mcp, csv], shuffle='batch', verbose=2, validation_split=0.1)    k.clear_session()    del model    return history1

问题在于,当我开始第一次训练时,一切正常,如下所示:

Training: DENSE/60N-14B-190E-tanh.h5Train on 2575 samples, validate on 287 samplesEpoch 1/1000Epoch 00001: loss improved from inf to 2.50127, saving model to DENSE/60N-14B-190E-tanh.h5 - 1s - loss: 2.5013 - binary_accuracy: 0.4711 - val_loss: 1.1434 - val_binary_accuracy: 0.5017Epoch 2/1000 ...Epoch 307/1000Epoch 00307: loss did not improve - 0s - loss: 0.5200 - binary_accuracy: 0.7522 - val_loss: 0.8077 - val_binary_accuracy: 0.5401Epoch 00307: early stopping

但是当第二个及以后的模型被创建时,损失值不是从[inf]开始,而是从上一次训练的最后值开始:

Training: DENSE/60N-14B-220E-tanh.h5Train on 2548 samples, validate on 284 samplesEpoch 1/1000Epoch 00001: loss did not improve - 1s - loss: 1.3203 - binary_accuracy: 0.5063 - val_loss: 0.7724 - val_binary_accuracy: 0.5246Epoch 2/1000Epoch 00002: loss did not improve - 0s - loss: 0.7366 - binary_accuracy: 0.4945 - val_loss: 0.7247 - val_binary_accuracy: 0.5000

即使使用

k.clear_session() del model 

似乎我仍然加载了关于上一个训练模型的一些先前信息。有人对这个问题有见解吗?


回答:

从你提供的训练进度输出来看,我猜测你正在使用Keras的ModelCheckpoint回调。如果你对多个训练运行使用同一个ModelCheckpoint,它只会在新模型的损失比先前保存的模型有所改善时才保存新模型。

要解决这个问题,只需在你的train_model函数中每次都生成一个新的ModelCheckpoint对象即可。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注