如何控制特征的数量 [机器学习]?

我正在编写一个机器学习代码(分类),用于区分两个类别。我开始时只为所有图像捕捉一个特征。

例如:(注意:1和0用于标记)class A=[(4295046.0, 1), (4998220.0, 1), (4565017.0, 1), (4078291.0, 1), (4350411.0, 1), (4434050.0, 1), (4201831.0, 1), (4203570.0, 1), (4197025.0, 1), (4110781.0, 1), (4080568.0, 1), (4276499.0, 1), (4363551.0, 1), (4241573.0, 1), (4455070.0, 1), (5682823.0, 1), (5572122.0, 1), (5382890.0, 1), (5217487.0, 1), (4714908.0, 1), (4697137.0, 1), (4057898.0, 1), (4143981.0, 1), (3899129.0, 1), (3830584.0, 1), (3557377.0, 1), (3125518.0, 1), (3197039.0, 1), (3109404.0, 1), (3024219.0, 1), (3066759.0, 1), (2726363.0, 1), (3507626.0, 1), …..等]

class B=[(7179088.0, 0), (7144249.0, 0), (6806806.0, 0), (5080876.0, 0), (5170390.0, 0), (5694876.0, 0), (6210510.0, 0), (5376014.0, 0), (6472171.0, 0), (7112956.0, 0), (7356507.0, 0), (9180030.0, 0), (9183460.0, 0), (9212517.0, 0), (9055663.0, 0), (9053709.0, 0), (9103067.0, 0), (8889903.0, 0), (8328604.0, 0), (8475442.0, 0), (8499221.0, 0), (8752169.0, 0), (8779133.0, 0), (8756789.0, 0), (8990732.0, 0), (9027381.0, 0), (9090035.0, 0), (9343846.0, 0), (9518609.0, 0), (9435149.0, 0), (9365842.0, 0), (9395256.0, 0), (4381880.0, 0), (4749338.0, 0), (5296143.0, 0), (5478942.0, 0), (5610865.0, 0), (5514997.0, 0), (5381010.0, 0), (5090416.0, 0), (4663958.0, 0), (4804526.0, 0), (4743107.0, 0), (4898914.0, 0), (5018503.0, 0), (5778240.0, 0), (5741893.0, 0), (4632926.0, 0), (5208486.0, 0), (5633403.0, 0), (5699410.0, 0), (5748260.0, 0), (5869260.0, 0), ….等]

/data 是 A 和 B 的组合x = [[each[0]] for each in data]y = [[each[1]] for each in data]print (len(x), len(y))x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)print (len(x_train), len(x_test))print (len(y_train), len(y_test))from sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)clf.fit(x_train, y_train)

问题:

要添加另一个特征需要做哪些改动?在添加特征时,A和B应该是什么样子?我是否需要更改这一行

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)

在使用两个特征时?

我的猜测:

class A=[(4295046.0,第二个特征, 1), (4998220.0,第二个特征, 1), (4565017.0,第二个特征, 1), (4078291.0,第二个特征, 1), (4350411.0,第二个特征, 1), (4434050.0, 1),……]这是对的吗?有没有更好的方法?


回答:

这个模型不需要明确指定特征的数量。
如果数据中的每个元组的最后一个元素始终是类别,你可以这样做:

x = [[each[:-1]] for each in data]y = [[each[-1]] for each in data]

然后继续进行后续操作即可。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注