如何仅预测标签而不是概率

当我预测输出时,我得到的是每个标签的概率(例如输出 = [0.002345, 0.997655]),而不是正确的标签。有没有办法只得到标签而不是它们的概率?

import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tflearn.data_utils import load_csv
import numpy as np
data, labels = load_csv("C:/Users/Animkush/Desktop/train.csv", categorical_labels=True, n_classes=2, target_column=30)
def preprocess(data, col):
    for id in sorted(col, reverse=True):
        [r.pop(id) for r in data]
    return np.array(data, dtype=np.float32)
ignore = [0]
data = preprocess(data, ignore)
network = input_data(shape=[None, 28], name="input")
network = tflearn.fully_connected(network, 32, activation="relu")
network = tflearn.fully_connected(network, 64, activation="relu")
network = tflearn.fully_connected(network, 128, activation="relu")
network = tflearn.fully_connected(network, 64, activation="relu")
network = tflearn.fully_connected(network, 32, activation="relu")
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(network)
model.fit(data, labels, n_epoch=100, batch_size=500, show_metric=True)
p = np.array([[-3.043540624,-3.157307121,1.08846278,2.288643618,1.35980513,-1.064822523,0.325574266,-0.067793653,-0.270952836,-0.838586565,-0.414575448,-0.50314086,0.676501545,-1.692028933,2.000634839,0.666779696,0.599717414,1.725321007,0.28334483,2.102338793,0.661695925,0.435477209,1.375965743,-0.293803153,0.279798032,-0.145361715,-0.252773123,0.035764225]])
print(model.predict(p))

回答:

Numpy方法argmax通常用于此目的:

import numpy as np
p = np.array([0.002345, 0.997655]) # 概率数组,按照您的示例
y = np.argmax(p) # 硬分类
y
# 1
# 另一个示例:
p = np.array([0.78, 0.22])
y = np.argmax(p)
y
# 0

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注