假设我有一个数据框df
,以及一个包含许多numpy数组的列'Array'
。现在我想仅保存那些在该列中最常见的数组形状的行,并删除其他行。我希望将这些数组作为特征输入以进行一些机器学习操作,因此我需要确保它们都具有相同的形状。以下是我的脚本,但它不起作用。我希望答案也能适用于特征是矩阵的情况。
import pandas as pddf = pd.DataFrame(data)lst = [i.shape for i in df['Array']]most_common = max(set(lst), key=lst.count)df = df[df['Array'].shape==most_common]
基本上,我想将原子结构转换为像numpy数组或矩阵这样的数值特征。我使用了一种称为库伦矩阵的方法来实现这一点。如果你想自己尝试一下,这是我的完整脚本:
import pandas as pdfrom ase.db import connectfrom ase import Atomsfrom ase.io import readimport numpy as npimport numpy.linalg as linalgdef eig_data(atoms): init_R = atoms.positions init_Z = atoms.numbers x_list = [] y_list = [] z_list = [] M_list = [] M_tmp = [] M_matrix = [] for x,y,z in init_R: x_list.append(x) y_list.append(y) z_list.append(z) order=0 for xl,yl,zl,Z in zip(x_list,y_list,z_list,init_Z): M_list.append((order,xl,yl,zl,Z)) order+=1 for order,x,y,z,charge in M_list: r = np.array((x,y,z)) M_tmp = [] for oorder,ox,oy,oz,ocharge in M_list: if oorder == order: IJ = 0.5*ocharge**2.4 M_tmp.append(IJ) else: otr = np.array((ox,oy,oz)) dist = np.linalg.norm(r-otr) InJ = (charge*ocharge)/dist M_tmp.append(InJ) M_matrix.append(M_tmp) M = np.array(M_matrix) w,v = np.linalg.eig(M) w_sort = np.sort(w)[::-1]# print(np.amax(w_sort)) return w_sortres = connect('c2db.db')df = []for row in res.select(): atoms = row.toatoms() i = row.id c = eig_data(atoms) f = row.formula E = row.energy g = row.gap w = row.workfunction df.append({'id': i, 'c_matrix':c, 'formula':f, 'energy': E, 'band_gap':g, 'work_function':w})df = pd.DataFrame(df)lst = [i.shape for i in df['c_matrix']]most_common = max(set(lst), key=lst.count)df = df[df['c_matrix'].shape==most_common]
数据库可以在这里下载:c2db_database
回答:
我的建议是通过这种方式为你的数据框创建一个过滤器
filter = [i.shape == most_common for i in df['c_matrix']]df = df[filter]
或者简单地
df = df[[i.shape == most_common for i in df['c_matrix']]]