我开始使用姿态估计 tflite 模型来获取人类的关键点。
https://www.tensorflow.org/lite/models/pose_estimation/overview
我已经开始使用单张图片或一个人并调用模型:
img = cv.imread('photos\standing\\3.jpg')img = tf.reshape(tf.image.resize(img, [257,257]), [1,257,257,3])model = tf.lite.Interpreter('models\posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite')model.allocate_tensors()input_details = model.get_input_details()output_details = model.get_output_details()floating_model = input_details[0]['dtype'] == np.float32if floating_model: img = (np.float32(img) - 127.5) / 127.5model.set_tensor(input_details[0]['index'], img)model.invoke()output_data = model.get_tensor(output_details[0]['index'])# o()offset_data = model.get_tensor(output_details[1]['index'])results = np.squeeze(output_data)offsets_results = np.squeeze(offset_data)print("output shape: {}".format(output_data.shape))np.savez('sample3.npz', results, offsets_results)
但是我在正确解析输出以获取每个身体部位的坐标/置信度方面遇到了困难。是否有人有解释这个模型结果的 Python 示例?(例如:使用它们将关键点映射回原始图像)
我的代码(来自一个类的一个片段,该类基本上直接从模型输出中获取 np 数组):
def get_keypoints(self, data): height, width, num_keypoints = data.shape keypoints = [] for keypoint in range(0, num_keypoints): maxval = data[0][0][keypoint] maxrow = 0 maxcol = 0 for row in range(0, width): for col in range(0,height): if data[row][col][keypoint] > maxval: maxrow = row maxcol = col maxval = data[row][col][keypoint] keypoints.append(KeyPoint(keypoint, maxrow, maxcol, maxval)) # keypoints = [Keypoint(x,y,z) for x,y,z in ] return keypointsdef get_image_coordinates_from_keypoints(self, offsets): height, width, depth = (257,257,3) # [(x,y,confidence)] coords = [{ 'point': k.body_part, 'location': (k.x / (width - 1)*width + offsets[k.y][k.x][k.index], k.y / (height - 1)*height + offsets[k.y][k.x][k.index]), 'confidence': k.confidence} for k in self.keypoints] return coords
这里的一些坐标是负数,这显然是不正确的。我的错误在哪里?
回答:
import numpy as np
对于输出热图和偏移量的姿态估计模型,可以通过以下步骤获得所需的点:
-
对热图执行 Sigmoid 操作:
scores = sigmoid(heatmaps)
-
每个姿态的关键点通常由一个二维矩阵表示,该矩阵中的最大值与模型认为该点在输入图像中的位置有关。使用 argmax2D 获得每个矩阵中该值的 x 和 y 索引,该值本身代表置信值:
x,y = np.unravel_index(np.argmax(scores[:,:,keypointindex]), scores[:,:,keypointindex].shape)
confidences = scores[x,y,keypointindex]
-
使用该 x,y 来查找用于计算关键点最终位置的相应偏移向量:
offset_vector = (offsets[y,x,keypointindex], offsets[y,x,num_keypoints+keypointindex])
-
在获得关键点坐标和偏移量后,可以通过以下方式计算关键点的最终位置:
image_positions = np.add(np.array(heatmap_positions) * output_stride, offset_vectors)
参见 这里 以了解如何获取输出步长,如果您还没有的话。tflite 姿态估计的输出步长为 32。
一个从姿态估计模型输出中提取关键点的函数。不包括 KeyPoint
类
def get_keypoints(self, heatmaps, offsets, output_stride=32): scores = sigmoid(heatmaps) num_keypoints = scores.shape[2] heatmap_positions = [] offset_vectors = [] confidences = [] for ki in range(0, num_keypoints ): x,y = np.unravel_index(np.argmax(scores[:,:,ki]), scores[:,:,ki].shape) confidences.append(scores[x,y,ki]) offset_vector = (offsets[y,x,ki], offsets[y,x,num_keypoints+ki]) heatmap_positions.append((x,y)) offset_vectors.append(offset_vector) image_positions = np.add(np.array(heatmap_positions) * output_stride, offset_vectors) keypoints = [KeyPoint(i, pos, confidences[i]) for i, pos in enumerate(image_positions)] return keypoints
关键点类:
PARTS = { 0: 'NOSE', 1: 'LEFT_EYE', 2: 'RIGHT_EYE', 3: 'LEFT_EAR', 4: 'RIGHT_EAR', 5: 'LEFT_SHOULDER', 6: 'RIGHT_SHOULDER', 7: 'LEFT_ELBOW', 8: 'RIGHT_ELBOW', 9: 'LEFT_WRIST', 10: 'RIGHT_WRIST', 11: 'LEFT_HIP', 12: 'RIGHT_HIP', 13: 'LEFT_KNEE', 14: 'RIGHT_KNEE', 15: 'LEFT_ANKLE', 16: 'RIGHT_ANKLE'}class KeyPoint(): def __init__(self, index, pos, v): x, y = pos self.x = x self.y = y self.index = index self.body_part = PARTS.get(index) self.confidence = v def point(self): return int(self.y), int(self.x) def to_string(self): return 'part: {} location: {} confidence: {}'.format( self.body_part, (self.x, self.y), self.confidence)