我需要在波士顿房价数据集上运行线性回归,但不使用scikit。
这是我目前想到的方案
import pandas as pdimport numpy as npimport matplotlib.pyplot as mltfrom sklearn.cross_validation import train_test_split data = pd.read_csv("housing.csv", delimiter=' ', skipinitialspace=True, names=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] )df_x = data.drop('MEDV', axis = 1)df_y = data['MEDV']x_train, x_test, y_train, y_test = train_test_split(df_x, df_y, test_size=0.2, random_state=4 )def hypothesis(x, theta): return np.dot(x, theta.T)def costfn(predictions, y, x): a = 1 / (2 * len(x)) * np.sum((prediction - y) ** 2) return adef gradient(theta, alpha, predictions, x, y): theta = np.subtract(theta, (alpha / len(x)) * np.dot(np.subtract(predictions, y).T, x)) return thetaalpha = 0.001iters = 1000theta = np.zeros([1, 13])predictions = hypothesis(x_train, theta)for i in range(iters): predictions = hypothesis(x_train, theta) theta = gradient(theta, alpha, predictions, x_train, y_train)predictions = hypothesis(x_test, theta)print(predictions)
我已经输入并分离了测试和训练案例,一切运作正常。但我遇到了这个错误 –
Exception Traceback (most recent call last)<ipython-input-33-36492e2820ce> in <module> 6 for i in range(iters): 7 predictions = hypothesis(x_train, theta)----> 8 theta = gradient(theta, alpha, predictions, x_train, y_train) 9 10 predictions = hypothesis(x_test, theta)<ipython-input-32-15d0b5b7bf16> in gradient(theta, alpha, predictions, x, y) 9 10 ---> 11 theta = np.subtract(theta, (alpha / len(x)) * np.dot(np.subtract(predictions, y).T, x)) 12 return theta/usr/lib/python3/dist-packages/pandas/core/series.py in __array_wrap__(self, result, context) 502 """ 503 return self._constructor(result, index=self.index,--> 504 copy=False).__finalize__(self) 505 506 def __array_prepare__(self, result, context=None):/usr/lib/python3/dist-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath) 262 else: 263 data = _sanitize_array(data, index, dtype, copy,--> 264 raise_cast_failure=True) 265 266 data = SingleBlockManager(data, index, fastpath=True)/usr/lib/python3/dist-packages/pandas/core/series.py in _sanitize_array(data, index, dtype, copy, raise_cast_failure) 3273 elif subarr.ndim > 1: 3274 if isinstance(data, np.ndarray):-> 3275 raise Exception('Data must be 1-dimensional') 3276 else: 3277 subarr = _asarray_tuplesafe(data, dtype=dtype)Exception: Data must be 1-dimensional
请帮助我。如果我的逻辑有误,请告诉我,因为我是初学者。
回答:
pandas
在数据管理方面非常出色,但我倾向于在数学步骤中使用NumPy对象。pandas
在这里试图做一些聪明的事情,我不知道是什么,但如果你将df_x.values
和df_y.values
传递给train_test_split()
,你的代码就可以运行:
x_train, x_test, y_train, y_test = train_test_split(df_x.values, df_y.values, test_size=0.2, random_state=4 )