如何解决TypeError: ‘float’ 对象不能被解释为整数

我在使用SMO算法时遇到了一个错误,提示’float’对象不能被解释为整数。由于我是Python新手,所以感到很困惑,请帮帮我…

    class SMO():        def __init__(self,regularization_nn,learning_rate_RBM,learning_rate_nn,n_iter_RBM,batch_size_RBM,batch_size_nn,n_iter_nn):            self.learning_rate_RBM=0.006            self.learning_rate_nn=0.1            self.n_iter_RBM=20            self.batch_size_RBM=100            self.batch_size_nn=100            self.n_iter_nn=5000            self.PopSize=batch_size_RBM            self.dim=n_iter_RBM            self.acc_err=batch_size_nn            self.lb=learning_rate_RBM            self.ub=learning_rate_nn            self.objf=regularization_nn            self.pos=numpy.zeros((batch_size_RBM,n_iter_RBM))            self.fun_val = numpy.zeros(batch_size_RBM)            self.fitness = numpy.zeros(batch_size_RBM)            self.gpoint = numpy.zeros((batch_size_RBM,2))            self.prob=numpy.zeros(batch_size_RBM)            self.LocalLimit=n_iter_RBM*batch_size_RBM;            self.GlobalLimit=batch_size_RBM;            self.fit = numpy.zeros(batch_size_RBM)            self.MinCost=numpy.zeros(n_iter_nn)            self.Bestpos=numpy.zeros(n_iter_RBM)        def initialize(self):global GlobalMin, GlobalLeaderPosition, GlobalLimitCount, LocalMin, LocalLimitCount, LocalLeaderPositionS_max=int(self.PopSize/2)LocalMin = numpy.zeros(S_max)LocalLeaderPosition=numpy.zeros((S_max,self.dim))LocalLimitCount=numpy.zeros(S_max)for i in range(self.PopSize):    print(i)    for j in range(self.dim):        if type(self.ub)==int:            self.pos[i,j]=random.random()*(self.ub-self.lb)+self.lb        else:            self.pos[i,j]=random.random()*(self.ub[j]-self.lb[j])+self.lb[j]

这是错误的跟踪信息:

    ---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-98-1b2f665e0321> in <module>()      1 if __name__ == '__main__':----> 2     chimp_optimizer(X,Y,X_train,X_test)2 frames<ipython-input-23-1b18b438af48> in chimp_optimizer(X, Y, X_train, Y_train)     16     #print(fopt)     17 ---> 18     x,succ_rate,mean_feval = main(Deep_belief_network,X,Y,regularization_nn,learning_rate_RBM,learning_rate_nn,n_iter_RBM,batch_size_RBM,batch_size_nn,n_iter_nn)     19     return x,succ_rate,mean_feval<ipython-input-97-906c6850e06b> in main(regularization_nn, learning_rate_RBM, learning_rate_nn, n_iter_RBM, batch_size_RBM, n_iter_nn, batch_size_nn, obj_val, succ_rate, mean_feval)    252     253   # =========================== Calling: initialize() =========================== #--> 254   smo.initialize()    255     256   # ========================== Calling: GlobalLearning() ======================== #<ipython-input-97-906c6850e06b> in initialize(self)     51         S_max=int(self.PopSize/2)     52         LocalMin = numpy.zeros(S_max)---> 53         LocalLeaderPosition=numpy.zeros((int(S_max),self.dim))     54         LocalLimitCount=numpy.zeros(S_max)     55         for i in range(self.PopSize):TypeError: 'float' object cannot be interpreted as an integer

我不知道为什么会出现这个错误…请指导我,我已经尝试过更改一些值但没有效果


回答:

应该使用 numpy.zeros( (int(batch_size_RBM), int(n_iter_RBM)) )

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注