如何解决R语言中”NAs are not allowed in subscripted assignments”的问题

我在使用R语言进行随机森林预测,使用的数据集是Aggregate_sample.csv。

Company Index,Is Customer,videos,videoswatched,tutorials,workshops,casestudies,productpages,other,totalActivities,youngTitleCount,oldTitleCount,Median between two Activities,Max between 2 activities,Time since100thactivitySTPT,0,0,3,0,0,0,0,19,22,0,22,120,64074480,0STPR,0,0,1,0,1,1,0,61,64,0,64,120,56004420,0PLNRTKNLJS,0,0,0,0,0,0,0,25,25,25,0,810,4349940,0ASSSNNSP,0,0,0,0,0,3,0,17,20,0,20,60,2220,0STPP,1,164,32,25,36,26,0,2525,2808,498,2310,60,2938260,76789992AJKMPTNKSL,0,0,0,0,0,0,0,1,1,0,1,0,0,0FNKL,0,0,0,1,0,0,0,21,22,0,22,300,2415900,0FNKK,0,0,1,0,0,0,0,1,2,2,0,60,60,0FNKN,1,2,0,1,0,0,0,22,25,0,25,480,150840,0

以下是我的R脚本

 # 安装并加载决策树和森林所需的包library(rpart)install.packages('randomForest')library(randomForest)Aggregate <- read.csv("~/Documents/Machine Lerning/preprocessed data/Aggregate_sample.csv")# splitdf 函数splitdf <- function(dataframe, seed=NULL) {if (!is.null(seed)) set.seed(seed)index <- 1:nrow(dataframe)trainindex <- sample(index, trunc(length(index)*0.7))trainset <- dataframe[trainindex, ]testset <- dataframe[-trainindex, ]list(trainset=trainset,testset=testset)}splits <- splitdf(Aggregate, seed=808)#它返回一个列表 - 两个名为trainset和testset的数据框str(splits)lapply(splits,nrow)#查看每个数据框的前几列lapply(splits,head)training <- splits$trainsettesting  <- splits$testset#拟合随机森林模型model <- randomForest(as.factor(Aggregate$Is.Customer) ~ Aggregate$seniorTitleCount +Aggregate$juniorTitleCount + Aggregate$totalActivities + Aggregate$Max.between.2.activities+ Aggregate$Time.since.100th.activity + Aggregate$downloads , data=training,importance=TRUE, ntree=2000)#print(mode)# 哪些变量是重要的varImpPlot(model)

但我一直收到以下错误,无法继续进行。看起来我的IsCustomer列有问题,但它只是一个包含”0″和”1″的列(我的数据集中没有NA值)。

Error in [<-.factor("*tmp*", keep, value = c("0", "0", "0", "0", "1", : NAs are not allowed in subscripted assignments In addition: Warning message:'newdata' had 3 rows but variables found have 9 rows

我阅读了以下相关问题,但没有找到答案。在lapply中赋值时”NAs are not allowed in subscripted assignments”

提前感谢。


回答:

看起来你只想从training数据框中提取数据,所以在你的公式中不应该引用Aggregate。使用测试数据中实际存在的变量名,这样似乎可以正常工作。

randomForest(as.factor(Is.Customer) ~ oldTitleCount +   youngTitleCount + totalActivities + Max.between.2.activities +    Time.since100thactivity + videos , data=training,importance=TRUE, ntree=2000)

返回结果如下

Call: randomForest(formula = as.factor(Is.Customer) ~ oldTitleCount +      youngTitleCount + totalActivities + Max.between.2.activities +      Time.since100thactivity + videos, data = training, importance = TRUE,      ntree = 2000)                Type of random forest: classification                     Number of trees: 2000No. of variables tried at each split: 2        OOB estimate of  error rate: 16.67%Confusion matrix:  0 1 class.error0 4 0         0.01 1 1         0.5

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注