我有一个变分自编码器,我想使用Adam作为它的优化器,但它出现了这个错误,我不知道这里哪里出了问题
class VAE(nn.Module): def __init__(self): super().__init__() #encoder self.enc = nn.Sequential( nn.Linear(1200, 786), nn.ReLU(), nn.Flatten() ) self.mean = nn.Linear(1200, 2) self.log = nn.Linear(1200, 2) #decoder self.dec = nn.Sequential( nn.Linear(2, 1200), nn.ReLU(), ) def param(self, mu, Log): eps = torch.randn(2, 1200) z = mu + (eps * torch.exp(Log * 0.5)) return z def forward(self, x): x = self.enc(x) mu , log = self.mean(x), self.log(x) z = self.param(mu, log) x = self.dec(z) return x, mu, logmodel = VAE()optim = torch.optim.Adam(model.param, lr=0.01)criterion = nn.CrossEntropyLoss()
这是错误信息
Traceback (most recent call last): File "C:\Users\khashayar\PycharmProjects\pythonProject2\VAE.py", line 40, in <module> optim = torch.optim.Adam(model.param, lr=0.01) File "C:\Users\khashayar\anaconda3\envs\deeplearning\lib\site-packages\torch\optim\adam.py", line 48, in __init__ super(Adam, self).__init__(params, defaults) File "C:\Users\khashayar\anaconda3\envs\deeplearning\lib\site-packages\torch\optim\optimizer.py", line 47, in __init__ param_groups = list(params)TypeError: 'method' object is not iterable
如何解决这个问题?
回答:
问题可能出在model.param
。param是一个方法,正如错误中所写:“’method’ object is not iterable”。优化器应该接收模型参数,而不是模型类的“param”方法。
尝试将optim = torch.optim.Adam(model.param, lr=0.01)
改为 optim = torch.optim.Adam(model.parameters(), lr=0.01)