我对机器学习还比较新手,过去两天我一直在尝试解决Unknown label type: 'continuous'
这个错误。
我的代码:import numpy as np
import pandas as pdfrom sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score dataset = pd.read_csv(r'allData.csv', sep=',') X = dataset.iloc[:, 1:3].values y = dataset.iloc[:, 4].values train_features, test_features, train_lables, test_lables = train_test_split(X, y, test_size=10, random_state=10) feature_scaler = StandardScaler() train_features = feature_scaler.fit_transform(train_features) test_features = feature_scaler.transform(test_features) classifier = RandomForestClassifier(n_estimators=300, random_state=10) all_accuracies = cross_val_score(estimator=classifier, X=train_features, y=train_lables, cv="warn") #all_accuracies = cross_val_score(estimator=classifier, X=train_features, y=train_lables, cv=3)#print(all_accuracies)
错误出现在cross_val_score
部分,我不明白为什么会得到Unknown label type: 'continuous'
这个错误。
任何帮助都将不胜感激。
如果有帮助的话,我的所有数据都是数值型的,有4列,300行。
回答:
您在使用RandomForestClassifier
时,输出是连续的。如果您要解决的问题是回归问题,那么您应该使用RandomForestRegressor
。