我想知道如何将自训练的word2vec保存为txt文件,其格式应类似于’word2vec-google-news’或’glove.6b.50d’,这些文件包含词汇和对应的向量。
我将自训练的向量导出到txt文件中,但这些文件中只有向量,没有前置的词汇。
我用于训练自己word2vec的代码如下:
from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport collectionsimport mathimport randomimport numpy as npfrom six.moves import xrangeimport zipfileimport tensorflow as tfimport pandas as pdfilename = ('data/data.zip')# Step 1: Read the data into a list of strings.def read_data(filename): with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return datawords = read_data(filename)#print('Data size', len(words))# Step 2: Build the dictionary and replace rare words with UNK token.vocabulary_size = 50000def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) #print("count",len(count)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionarydata, count, dictionary, reverse_dictionary = build_dataset(words)#del words # Hint to reduce memory.#print('Most common words (+UNK)', count[:5])#print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])data_index = 0# Step 3: Function to generate a training batch for the skip-gram model.def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labelsbatch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)#for i in range(8): #print(batch[i], reverse_dictionary[batch[i]],'->', labels[i, 0], reverse_dictionary[labels[i, 0]])# Step 4: Build and train a skip-gram model.batch_size = 128embedding_size = 128skip_window = 2num_skips = 2valid_size = 9valid_window = 100num_sampled = 64 # Number of negative examples to sample.valid_examples = np.random.choice(valid_window, valid_size, replace=False)graph = tf.Graph()with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size]),dtype=tf.float32) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights,biases=nce_biases, inputs=embed, labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer()# Step 5: Begin training.num_steps = 20000with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() #print("Initialized") average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val #if step % 2000 == 0: # if step > 0: # average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. # print("Average loss at step ", step, ": ", average_loss) #average_loss = 0 final_embeddings = normalized_embeddings.eval()np.savetxt('data/w2v.txt', final_embeddings)
回答: