假设我有一个数据集并构建了一个机器学习模型。这个数据集每周更新,更新后我想让模型预测新出现的行,并将预测结果添加到原始数据集中。我该如何做到这一点?
这是我尝试的方法:
import pandas as pdimport numpy as npimport sklearnfrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import cross_val_scorefrom sklearn.svm import SVCurl = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']df = pd.read_csv(url, names=names)dfarray = df.valuesX = array[:,0:4]y = array[:,4]X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
我跳过了检查不同模型得分的步骤。
model = SVC(gamma='auto')model.fit(X_train, Y_train)predictions = model.predict(X_validation)
在这里我添加新数据来进行测试:
new_data = [[5.9, 3.0, 5.7, 1.5], [4.8, 2.9, 3.0, 1.2]]df2 = pd.DataFrame(new_data, columns = ["sepal-length", "sepal-width", "petal-length", "petal-width"])df3 = df.append(df2, ignore_index=True)df3array2 = df3.valuesX2 = array2[:,0:4]predict = model.predict(X2)predictdf3['pred'] = predictdef final_class(row): if pd.isnull(row['class']): return row['pred'] else: return row['class']df3['final_class'] = df3.apply(lambda x: final_class(x), axis=1)df3
这个方法有效,但我认为这不是最佳方法。有人能帮我吗?
回答:
这是正确的方法。
你也可以只对新数据集进行预测,并将预测结果附加到最初预测的数据集中。