如何计算训练Keras模型所需的RAM内存?我想进行这一计算是因为我在训练模型时有时会遇到超出系统内存的错误。以下是我的模型示例:
Layer (type) Output Shape Param #=================================================================conv2d_1 (Conv2D) (None, 30, 30, 32) 320_________________________________________________________________conv2d_2 (Conv2D) (None, 28, 28, 32) 9248_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32) 0_________________________________________________________________dropout_1 (Dropout) (None, 14, 14, 32) 0_________________________________________________________________conv2d_3 (Conv2D) (None, 12, 12, 64) 18496_________________________________________________________________conv2d_4 (Conv2D) (None, 10, 10, 64) 36928_________________________________________________________________max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0_________________________________________________________________dropout_2 (Dropout) (None, 5, 5, 64) 0_________________________________________________________________flatten_1 (Flatten) (None, 1600) 0_________________________________________________________________dense_1 (Dense) (None, 128) 204928_________________________________________________________________dropout_3 (Dropout) (None, 128) 0_________________________________________________________________dense_2 (Dense) (None, 10) 1290=================================================================Total params: 271,210Trainable params: 271,210Non-trainable params: 0
回答:
假设每个参数都是32位的数据类型(单精度浮点数,4字节)。您的内存使用量应该大约是:(参数数量)* 4字节
在这种情况下:271,210 * 4字节 = 1084840字节 =~ 1MB
然而,有一个重要的考虑因素需要记住。这是在假设批量大小为1的情况下,即每次加载一个输入。如果您使用的是小批量(典型的批量大小为32或64),那么您需要将内存计算结果乘以批量大小。如果您使用的是批量梯度下降,那么您可能在每个批次中使用整个数据集。在这种情况下,您的内存需求可能会非常大。
此分析的灵感来自:https://datascience.stackexchange.com/questions/17286/cnn-memory-consumption