如何绘制KMeans聚类图?

我正在尝试使用MiniBatchKMeans处理一个较大的数据集,并绘制两个不同的属性。我收到了一个KeyError: 2的错误。我认为我的for循环中可能有错误,但我不确定错误在哪里。有人能帮我找出错误吗?我正在运行以下代码:

import numpy as np ##导入必要的包import pandas as pdimport matplotlib.pyplot as pltfrom matplotlib import stylestyle.use("ggplot")from pandas.plotting import scatter_matrixfrom sklearn.preprocessing import *from sklearn.cluster import MiniBatchKMeans url2="http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data" #从互联网上免费且易于获取的来源读取数据Adult = pd.read_csv(url2, header=None, skipinitialspace=True) #通过去除列中的额外空格来解码数据,使用skipinitialspace=True##为数据框分配合理的列名Adult.columns = ["age","workclass","fnlwgt","education","educationnum","maritalstatus","occupation",                   "relationship","race","sex","capitalgain","capitalloss","hoursperweek","nativecountry",                 "less50kmoreeq50kn"]print("查看数据框:")print(Adult.head()) #获取数据的概览print(Adult.shape)print(Adult.dtypes)np.median(Adult['fnlwgt']) #计算最终权重列的中位数TooLarge = Adult.loc[:,'fnlwgt'] > 748495 #设置一个值,用于用中位数替换最终权重列中的异常值Adult.loc[TooLarge,'fnlwgt']=np.median(Adult['fnlwgt']) #用最终权重列的中位数替换列中的值Adult.loc[:,'fnlwgt']X = pd.DataFrame()X.loc[:,0] = Adult.loc[:,'age']X.loc[:,1] = Adult.loc[:,'hoursperweek']kmeans = MiniBatchKMeans(n_clusters = 2)kmeans.fit(X)centroids = kmeans.cluster_centers_labels = kmeans.labels_print(centroids)print(labels)colors = ["g.","r."]for i in range(len(X)):    print("坐标:",X[i], "标签:", labels[i])    plt.plot(X.loc[:,0][i],X.loc[:,1][i], colors[labels[i]], markersize = 10)plt.scatter(centroids[:, 0], centroids[:, 1], marker = "x", s=150, linewidths = 5, zorder = 10)plt.show()

当我运行for循环时,我只看到散点矩阵中绘制了两个数据点。我需要从创建的数据框中以不同的方式调用这些点吗?


回答:

你可以通过避免运行循环来绘制32,000个点中的每一个,从而避免这个问题,这样做是坏习惯且不必要的。你可以简单地将两个数组传递给plt.scatter()来制作这个散点图,不需要循环。使用以下几行代码:

colors = ["green","red"]plt.scatter(X.iloc[:,0], X.iloc[:,1], c=np.array(colors)[labels],     s = 10, alpha=.1)plt.scatter(centroids[:, 0], centroids[:, 1], marker = "x", s=150,     linewidths = 5, zorder = 10, c=['green', 'red'])plt.show()

输入图片说明

你最初的错误是由pandas索引的不当使用引起的。你可以通过以下方式复制你的错误:

df = pd.DataFrame(list('dasdasas'))df[1]

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注