如何更改LSTM层的输入维度

我需要构建一个包含两层dropout和两层LSTM的模型。不幸的是,我遇到了一个关于输入形状的问题,这个问题出现在我的第二个LSTM层。在查找问题之后,我发现我需要更改输入维度,但我不知道如何操作。我找到了一种需要使用Lambda层的选项,但我在环境中无法导入它(这是一个Coursera环境)。你有任何建议来解决我的错误吗?

model = Sequential()Layer1 = model.add(Embedding(total_words, 64, input_length=max_sequence_len-1))Layer2 = model.add(Bidirectional(LSTM(20)))Layer3 = model.add(Dropout(.03))Layer4 = model.add(LSTM(20))Layer5 = model.add(Dense(total_words,     kernel_regularizer=regularizers.l1_l2(l1=1e-5, l2=1e-4),    bias_regularizer=regularizers.l2(1e-4),    activity_regularizer=regularizers.l2(1e-5)))          # A Dense Layer including regularizersLayer6 = model.add(Dense(total_words, activation = 'softmax'))          # Pick an optimizer          model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])model.summary()

错误:

ValueError: Input 0 of layer lstm_20 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 40]

回答:

感谢@*** 和@*** 的更新。

为了社区的利益,这里提供一个使用下方示例数据的解决方案

import tensorflow as tfimport numpy as npfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dropout,  Densefrom tensorflow.keras.regularizers import l1_l2, l2total_words = 478max_sequence_len = 90model = Sequential()Layer1 = model.add(Embedding(total_words, 64, input_length=max_sequence_len-1))Layer2 = model.add(Bidirectional(LSTM(20)))Layer3 = model.add(Dropout(.03))Layer4 = model.add(LSTM(20))Layer5 = model.add(Dense(total_words,     kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4),    bias_regularizer=l2(1e-4),    activity_regularizer=l2(1e-5)))          # A Dense Layer including regularizersLayer6 = model.add(Dense(total_words, activation = 'softmax'))          # Pick an optimizer          model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])model.summary()

输出:

---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-1-8ce04225c92d> in <module>()     12 Layer2 = model.add(Bidirectional(LSTM(20)))     13 Layer3 = model.add(Dropout(.03))---> 14 Layer4 = model.add(LSTM(20))     15 Layer5 = model.add(Dense(total_words,      16     kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4),8 frames/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)    221                          'expected ndim=' + str(spec.ndim) + ', found ndim=' +    222                          str(ndim) + '. Full shape received: ' +--> 223                          str(tuple(shape)))    224     if spec.max_ndim is not None:    225       ndim = x.shape.rankValueError: Input 0 of layer lstm_1 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 40)

修复后的代码:

一旦你在LSTM层(即Layer2)中添加return_sequences=True,你的问题就可以解决。

model = Sequential()Layer1 = model.add(Embedding(total_words, 64, input_length=max_sequence_len-1))Layer2 = model.add(Bidirectional(LSTM(20, return_sequences=True)))Layer3 = model.add(Dropout(.03))Layer4 = model.add(LSTM(20))Layer5 = model.add(Dense(total_words,     kernel_regularizer=l1_l2(l1=1e-5, l2=1e-4),    bias_regularizer=l2(1e-4),    activity_regularizer=l2(1e-5)))          # A Dense Layer including regularizersLayer6 = model.add(Dense(total_words, activation = 'softmax'))          # Pick an optimizer          model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])model.summary()

输出:

Model: "sequential_1"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================embedding_1 (Embedding)      (None, 89, 64)            30592     _________________________________________________________________bidirectional_1 (Bidirection (None, 89, 40)            13600     _________________________________________________________________dropout_1 (Dropout)          (None, 89, 40)            0         _________________________________________________________________lstm_3 (LSTM)                (None, 20)                4880      _________________________________________________________________dense (Dense)                (None, 478)               10038     _________________________________________________________________dense_1 (Dense)              (None, 478)               228962    =================================================================Total params: 288,072Trainable params: 288,072Non-trainable params: 0_________________________________________________________________

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注