我最近更新到了Tensorflow的最新版本2.3.1
,更新后我的模型无法正常工作了:
model = tf.keras.Sequential([ layers.Input(shape= input_shape), # input_shape: (1623, 105, 105, 3) layers.experimental.preprocessing.Rescaling(1./255), layers.Conv2D(32, 3, activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(ds_info.features['label'].num_classes) ])
问题在于输入层添加了一个新的batch_size
维度,这反过来导致了以下错误:
Input 0 of layer max_pooling2d_22 is incompatible with the layer: expected ndim=4, found ndim=5. Full shape received: [None, 1623, 103, 103, 32]
如何阻止这种情况的发生,或者修复这个问题。
回答:
在指定输入形状时,您需要省略样本数量。因为Keras可以接受任何数量的样本。所以请尝试这样做:
layers.Input(shape = input_shape[1:]),
这将指定一个输入形状为(rows, columns, channels)
,省略样本数量。