我正在基于这个乳腺癌数据集构建一个机器学习预测的Dash应用。
我想通过下拉菜单选择我的一个模型,运行拟合,并返回一个更新后的混淆矩阵(热图)。
我计划扩展脚本以包括表格、ROC曲线、学习曲线等(即,多输出回调),但首先我想让这部分工作,然后再实现其他元素。
我尝试了不同的东西。
例如,在当前代码(如下)之前,我尝试直接从下拉菜单调用模型,然后在回调中进行所有混淆矩阵计算,结果出现了AttributeError: ‘str’ object has no attribute ‘fit’的错误:
@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])def update_cm_matix(model): class_names=[0,1] fitModel = model.fit(X_train, y_train) y_pred = fitModel.predict(X_test) cm = confusion_matrix(y_test, y_pred) return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')], 'layout': dict(width=350, height=280, margin={'t': 10}, xaxis=dict(title='预测类别', tickvals=[0, 1]), yaxis=dict(title='真实类别', tickvals=[0, 1], autorange='reversed'))}
(替换脚本中的app.callback和函数)。
我目前正在努力解决的版本是:
# -*- coding: utf-8 -*-import dashimport dash_core_components as dccimport dash_html_components as htmlimport dash_bootstrap_components as dbcimport pandas as pdimport numpy as npfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import GridSearchCV, train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.feature_selection import RFEimport plotly.graph_objs as gofrom dash.dependencies import Input, Outputapp = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])server = app.serverapp.config.suppress_callback_exceptions = Truedf = pd.read_csv("breast_cancer.csv")y = np.array(df.diagnosis.tolist())data = df.drop('diagnosis', 1)X = np.array(data.values)scaler = StandardScaler()X = scaler.fit_transform(X)random_state = 42X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=random_state)# 第一种模型:逻辑模型 + 优化超参数log = LogisticRegression(random_state=random_state)param_grid = {'penalty': ['l2', 'l1'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}CV_log = GridSearchCV(estimator=log, param_grid,, scoring='accuracy', verbose=1, n_jobs=-1)CV_log.fit(X_train, y_train)log_best_params = CV_log.best_params_log_clf = LogisticRegression(C=log_best_params['C'], penalty=log_best_params['penalty'], random_state=random_state)# 第二种模型:带递归特征消除的逻辑模型(仅为示例,其他模型将被包含)rfe_selector = RFE(log_clf)# 应用布局app.layout = html.Div([ html.Div([ dcc.Dropdown( id='dropdown-5', options=[{'label': '逻辑回归', 'value': 'log_clf'}, {'label': 'RFE', 'value': 'rfe_selector'}], value='log_clf', style={'width': '150px', 'height': '35px', 'fontSize': '10pt'} )], style={}), html.Div([ dcc.Graph(id='conf_matrix') ])])# 运行选定模型的函数def ClassTrainEval(model): fitModel = model.fit(X_train, y_train) y_pred = fitModel.predict(X_test) cm = confusion_matrix(y_test, y_pred) return fitModel, y_pred, y_score, cmmodels = [log_clf, rfe_selector]class_names = [0,1]# dash回调@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])def update_cm_matix(model): for model in models: ClassTrainEval(model) return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')], 'layout': dict(width=350, height=280, margin={'t': 10}, xaxis=dict(title='预测类别', tickvals=[0, 1]), yaxis=dict(title='真实类别', tickvals=[0, 1], autorange='reversed'))}if __name__ == '__main__': app.run_server(debug=True)
在这里我得到了一个NameError: name ‘cm’ is not defined的错误。
我真的不确定如何继续推进以使其工作 – 所以我希望有人能指导我正确的方向。
谢谢!
回答:
你的代码中有多个错误。让我们先解决你的两次尝试。
dcc.Dropdown( id='dropdown-5', options=[{'label': '逻辑回归', 'value': 'log_clf'}, {'label': 'RFE', 'value': 'rfe_selector'}], value='log_clf', style={'width': '150px', 'height': '35px', 'fontSize': '10pt'} )], style={})
在你的下拉菜单中,模型是一个字符串(type('log_clf') == str
),所以你不能训练它。你需要按以下方式编写回调:
models = {'逻辑回归':log_clf, 'RFE':rfe_selector}""""我跳过了代码的一些行"""dcc.Dropdown( id='dropdown-5', options=[{'label': v, 'value': v} for v in ['逻辑回归','RFE']], value='逻辑回归', style={'width': '150px', 'height': '35px', 'fontSize': '10pt'} )
对于第二次尝试,你还需要一行来适应我所做的更改:
错误是:NameError: name 'cm' is not defined error
(我假设它发生在回调中),这是因为你没有将函数的输出分配给变量:
函数是
# 运行选定模型的函数def ClassTrainEval(model): fitModel = model.fit(X_train, y_train) y_pred = fitModel.predict(X_test) cm = confusion_matrix(y_test, y_pred) return fitModel, y_pred, y_score, cm #注意,y_score从未定义,所以你需要删除它
然后在回调中你有:
# dash回调@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])def update_cm_matix(model): for model in models: #<-------不需要循环 ClassTrainEval(model) #<-------这里你需要分配输出 return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')], 'layout': dict(width=350, height=280, margin={'t': 10}, xaxis=dict(title='预测类别', tickvals=[0, 1]), yaxis=dict(title='真实类别', tickvals=[0, 1], autorange='reversed'))}
你可能想要写:
@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])def update_cm_matix(v): model = models[v] fitModel, y_pred, cm = ClassTrainEval(model) return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')], 'layout': dict(width=350, height=280, margin={'t': 10}, xaxis=dict(title='预测类别', tickvals=[0, 1]), yaxis=dict(title='真实类别', tickvals=[0, 1], autorange='reversed'))}