我使用自然语言处理(NLP)来对我的数据进行分类,我已经训练了我的数据,现在我想知道单个输入值的得分。我的数据包含服装和时尚相关的内容,应该返回它所属的类别。我想检查单个输入值的分类得分。我是这样做的:
bow4 = bow_transformer.transform([message4])tfidf4 = tfidf_transformer.transform(bow4)predicted = spam_detect_model.predict(tfidf4)from sklearn.metrics import classification_reportprint (classification_report(data['Category Path'], predicted))
然后我收到了以下错误
“发现输入变量的样本数不一致:”
这是因为预测值的数组大小与数据不匹配。
如何从单个预测值查看分类报告?我想这样做是因为我想创建一个用户可以输入的Web应用程序。如果分类得分低于某个值(例如x),则会显示错误。
谢谢!
我的完整代码如下
import pandas as pdimport seaborn as snsfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.feature_extraction.text import TfidfTransformerimport stringfrom nltk.corpus import stopwords#open filedata = pd.read_csv('cats.csv',sep=';')data['length'] = data['Product Name'].str.len()#remove all puncsdef text_process(mess): # Check characters to see if they are in punctuation nopunc = [char for char in mess if char not in string.punctuation] # Join the characters again to form the string. nopunc = ''.join(nopunc) # Now just remove any stopwords return [word for word in nopunc.split() if word.lower() not in stopwords.words('english') if word.lower() not in stopwords.words('dutch')]# Might take awhile...bow_transformer = CountVectorizer(analyzer=text_process).fit(data['Product Name'])# Print total number of vocab wordsprint(len(bow_transformer.vocabulary_))messages_bow = bow_transformer.transform(data['Product Name'])tfidf_transformer = TfidfTransformer().fit(messages_bow)messages_tfidf = tfidf_transformer.transform(messages_bow)from sklearn.naive_bayes import MultinomialNBspam_detect_model = MultinomialNB().fit(messages_tfidf, data['Category Path'])message4 = "some dummy data "bow4 = bow_transformer.transform([message4])tfidf4 = tfidf_transformer.transform(bow4)predicted = spam_detect_model.predict(tfidf4)#errors herefrom sklearn.metrics import classification_reportprint (classification_report(data['Category Path'], predicted))
回答:
经过反复试验后终于找到了答案。
基本上有spam_detect_model.classes_
属性,你可以看到类别。使用predict_proba
可以找到概率。现在你需要将它们组合起来,你可以使用Python中的zip
方法来实现这一点。
所以,对于那些挣扎的人来说,看起来是这样的:
bow4 = bow_transformer.transform([message4])tfidf4 = tfidf_transformer.transform(bow4)counter = 0predicted = spam_detect_model.predict_proba(tfidf4)for x in spam_detect_model.classes_: #classes_ 给你标签, proba = round(predicted[0][counter],2) if proba > 0.01: #只返回概率大于0.10%的标签 print(x + ' 概率 '+ str(proba)) counter +=1 ```