**我在尝试保存模型以便在Web应用程序中使用时遇到了这个错误**
X = []sentences = list(review_df['text'])for sen in sentences:X.append(clean_text(sen))y = review_df['Label']y = np.array(list(map(lambda x: 1 if x=="fake" else 0, y)))
#使用循环神经网络(LSTM)进行文本分类
from keras.layers.recurrent import LSTMmodel = Sequential()embedding_layer = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=maxlen , trainable=False)model.add(embedding_layer)model.add(LSTM(128))model.add(Dense(1, activation='sigmoid'))model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])print(model.summary())
#训练模型
history = model.fit(X_train, y_train, batch_size=128, epochs=6, verbose=1, validation_split=0.2)score = model.evaluate(X_test, y_test, verbose=1)
#打印模型结果
print("测试分数:", score[0])print("测试准确率:", score[1])
#对单个实例进行预测
instance = X[57]print(instance)instance = tokenizer.texts_to_sequences(instance)flat_list = []for sublist in instance:for item in sublist:flat_list.append(item)flat_list = [flat_list]instance = pad_sequences(flat_list, padding='post', maxlen=maxlen)model.predict(instance)
#保存模型
import picklewith open('model.pkl', 'wb') as f:pickle.dump(model, f)
当我尝试保存模型时,遇到了这个错误:TypeError: can’t pickle _thread.RLock objects有没有解决这个错误的办法?
回答:
试试这样做:
model_json = model.to_json()with open("my_model.json", "w") as json_file: json_file.write(model_json)