我需要进行四折嵌套重复交叉验证来训练模型。我编写了以下代码,其中包含了内部交叉验证,但现在我正在努力创建外部验证。
fitControl <- trainControl(## 10-fold CV method = "repeatedcv", number = 10, ## repeated five times repeats = 5, savePredictions = TRUE, classProbs = TRUE, summaryFunction = twoClassSummary)model_SVM_P <- train(Group ~ ., data = training_set, method = "svmPoly", trControl = fitControl, verbose = FALSE, tuneLength = 5)
我尝试解决这个问题:
ntrain=length(training_set) train.ext=createFolds(training_set,k=4,returnTrain=TRUE)test.ext=lapply(train.ext,function(x) (1:ntrain)[-x])for (i in 1:4){ model_SVM_P <- train(Group ~ ., data = training_set[train.ext[[i]]], method = "svmRadial", trControl = fitControl, verbose = FALSE, tuneLength = 5) }
但这并没有奏效。我该如何进行这个外部循环呢?
回答:
rsample
包已经在nested_cv()
函数中实现了外部循环,详见文档。
要评估由nested_cv
训练的模型,请查看这个示例,它展示了“重负荷”工作的具体位置:
# `object` is an `rsplit` object in `results$inner_resamples` summarize_tune_results <- function(object) { # Return row-bound tibble that has the 25 bootstrap results map_df(object$splits, tune_over_cost) %>% # For each value of the tuning parameter, compute the # average RMSE which is the inner bootstrap estimate. group_by(cost) %>% summarize(mean_RMSE = mean(RMSE, na.rm = TRUE), n = length(RMSE), .groups = "drop")}tuning_results <- map(results$inner_resamples, summarize_tune_results)
这段代码对每个超参数和训练数据的每个分割(或折叠)应用tune_over_cost
函数,这里称为“评估数据”。
请查看示例以获取更多有用的代码,包括并行处理。