Q值过高,值变成NaN,Q-Learning Tensorflow

我编写了一个非常简单的游戏,运行方式如下:

给定一个4×4的方格场,玩家可以移动(向上、向右、向下或向左)。

  • 进入代理从未访问过的方格会获得1的奖励。

  • 踏入“死亡区域”会获得-5的奖励,然后游戏将重置。

  • 移动到已经访问过的区域会获得-1的奖励

  • 进入“胜利区域”(只有一个这样的区域)会获得5的奖励,游戏也会重置。


现在我想让一个AI通过Q-Learning来学习玩这个游戏。

我如何组织输入/特征工程:

网络的输入是一个形状为1×4的数组,其中arr[0]表示上方的字段(向上移动时),arr[1]表示右侧的字段,arr[2]表示下方的字段,arr[3]表示左侧的字段。

数组可能持有的值:0, 1, 2, 3

0 = “死亡区域”,即最差情况

1 = 这将是4×4字段之外(所以你不能走那里)或该字段已经被访问过

2 = 未访问的字段(所以这是好事)

3 = “胜利区域”,即最佳情况

如你所见,我根据它们的奖励对它们进行了排序。

由于游戏以相同的方式接受输入(0 = 向上移动,1 = 向右移动,2 = 向下移动,3 = 向左移动),AI唯一需要学习的基本上是:选择持有最大值的数组索引。

但遗憾的是它不起作用,输入到神经网络的预期Q值越来越高。它们上升到NaN。


这是我的代码(包括游戏的开始部分):

import numpy as npimport randomImport tensorflow as tfimport matplotlib.pyplot as pltfrom time import sleepepisoden = 0felder = []schon_besucht = []playerx = 0playery = 0grafik = Falsedef gib_zustand():    # besonderes feature engineering:    # input besteht nur aus einer richtung, die one-hot-encoded ist; also 4 inputneuronen    # (glut, wand/besucht, unbesucht, sieg)    #    # es ist die richtung, die bewertet werden soll (also 1 outputneuron fuer eine richtung)    # rueckgabe hier: array, shape: 4x4 (s.o.)    global playerx    global playery    # oben     if playery == 0:        oben = 1    else:        oben = felder[playery-1][playerx]    # rechts    if playerx == 4:        rechts = 1    else:        rechts = felder[playery][playerx+1]    # unten    if playery == 4:        unten = 1    else:        unten = felder[playery+1][playerx]    # links    if playerx == 0:        links = 1    else:        links = felder[playery][playerx-1]    return np.array([oben, rechts, unten, links])def grafisch():    if grafik:        # encoding:        # glut = G, besucht = b, unbesucht = , sieg = S, Spieler = X        global felder        global playerx        global playery        print('')        for y in range(0,5):            print('|', end='')            for x in range(0,5):                if felder[y][x] == 0:                    temp = 'G'                if felder[y][x] == 1:                    temp = 'b'                if felder[y][x] == 2:                    temp = ' '                if felder[y][x] == 3:                    temp = 'S'                if y == playery and x == playerx:                    temp = 'X'                print(temp, end='')                print('|', end='')            print('')def reset():    print('--- RESET ---')    global playery    global playerx    global felder    global schon_besucht    playerx = 1    playery = 3    # anordnung    # glut = 0, wand/besucht = 1, unbesucht = 2, sieg = 3    felder = [[2 for x in range(0,5)] for y in range(0,5)]    # zwei mal glut setzen    gl1 = random.randint(1,3)    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))    felder[gl1][gl1_1] = 0 # glut    # zweites mal    gl1 = random.randint(1,3)    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))    felder[gl1][gl1_1] = 0 # glut    # pudding    felder[1][3] = 3    # ruecksetzen    schon_besucht = []    grafisch()    return gib_zustand()def step(zug):    # 0 = oben, 1 = rechts, 2 = unten, 3 = links    global playerx    global playery    global felder    global schon_besucht    if zug == 0:        if playery != 0:            playery -= 1    if zug == 1:        if playerx != 4:            playerx += 1    if zug == 2:        if playery != 4:            playery += 1    if zug == 3:        if playerx != 0:            playerx -= 1    # belohnung holen    wert = felder[playery][playerx]    if wert==0:        belohnung = -5    if wert==1:        belohnung = -1    if wert==2:        belohnung = 1    if wert==3:        belohnung = 5    # speichern wenn nicht verloren    if belohnung != -5:        schon_besucht.append((playery,playerx))        felder[playery][playerx] = 1    grafisch()    return gib_zustand(), belohnung, belohnung==5, 0 # 0 damits passtepisoden = 0tf.reset_default_graph()#These lines establish the feed-forward part of the network used to choose actionsinputs1 = tf.placeholder(shape=[1,4],dtype=tf.float32)#W1 = tf.Variable(tf.random_uniform([16,8],0,0.01))W2 = tf.Variable(tf.random_uniform([4,4],0,0.01))#schicht2 = tf.matmul(inputs1,W1)Qout = tf.matmul(inputs1,W2)predict = tf.argmax(Qout,1)#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)loss = tf.reduce_sum(tf.square(nextQ - Qout))trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)updateModel = trainer.minimize(loss)init = tf.initialize_all_variables()# Set learning parametersy = .99e = 0.1num_episodes = 10_000#create lists to contain total rewards and steps per episodejList = []rList = []with tf.Session() as sess:    sess.run(init)    for i in range(num_episodes):                     #Reset environment and get first new observation        s = reset()        rAll = 0        d = False        j = 0        #The Q-Network                while j < 99:            j+=1            #Choose an action by greedily (with e chance of random action) from the Q-network            a,allQ = sess.run([predict,Qout],feed_dict={inputs1:s.reshape(1,4)}) # berechnet prediction fuer input (input scheint hier one hot encoded zu sein)            if np.random.rand(1) < e:                a[0] = random.randint(0,3)                             #Get new state and reward from environment            s1,r,d,_ = step(a[0])            #Obtain the Q' values by feeding the new state through our network            Q1 = sess.run(Qout,feed_dict={inputs1:s1.reshape(1,4)})            #Obtain maxQ' and set our target value for chosen action.            maxQ1 = np.max(Q1)            targetQ = allQ            targetQ[0,a[0]] = r + y*maxQ1            #Train our network using target and predicted Q values            _,W1 = sess.run([updateModel,W2],feed_dict={inputs1:s.reshape(1,4),nextQ:targetQ})            rAll += r            s = s1            if r == -5 or r == 5:                if r == 5:                    episoden+=1                reset()                #Reduce chance of random action as we train the model.                e = 1./((i/50) + 10)                break        jList.append(j)        #print(rAll)        rList.append(rAll)print("Percent of succesful episodes: " + str((episoden/num_episodes)*100) + "%")plt.plot(rList)plt.plot(jList)

回答:

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注