我试图从以下代码片段中获取列名:
anova_filter = SelectKBest(f_regression, k=10)clf = svm.SVC(kernel='linear')anova_svm = make_pipeline(anova_filter, clf)f_reg_features = anova_svm.fit(df_train, df_train_y)
我尝试了一些其他建议,比如这个,但没能成功:
如何在sklearn pipeline中获取通过特征消除选定的特征名称?
提前感谢。
回答:
使用eli5库(免责声明:我是作者之一),你可以这样做:
# 原始示例:from sklearn.feature_selection import SelectKBest, f_regressionfrom sklearn import svmfrom sklearn.datasets import make_classificationfrom sklearn.pipeline import make_pipelineimport pandas as pdX, y = make_classification(n_features=5, n_informative=5, n_redundant=0)df_train = pd.DataFrame(X, columns=['A', 'B', 'C', 'D', 'E'])df_train_y = pd.DataFrame(y)anova_filter = SelectKBest(f_regression, k=3)clf = svm.SVC(kernel='linear')anova_svm = make_pipeline(anova_filter, clf)f_reg_features = anova_svm.fit(df_train, df_train_y)
然后:
import eli5feat_names = eli5.transform_feature_names(anova_filter, list(df.columns))
它的工作方式与Vivek Kumar的建议类似;优点是统一的API – 无需为每个转换器记住这样的代码片段。
如果你将SVC(kernel=’linear’)替换为sklearn.linear_model.LinearSVM(这也应该快得多),你可以这样做:
eli5.show_weights(anova_svm, feature_names=list(df.columns))
并得到如下表格: