Python MLPClassifier 值错误

我目前正在尝试训练 sklearn 中实现的 MLPClassifier…当我尝试使用给定的值进行训练时,我得到了以下错误:

ValueError: setting an array element with a sequence.

特征向量的格式是

[ [one_hot_encoded 品牌名称], [不同应用缩放到均值为0和方差为1] ]

有谁知道我做错了什么吗?

谢谢!

特征向量:

[

array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]),

array([ 0.82211852, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 4.45590895, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 0.3439882 , -0.22976818, -0.22976818, -0.22976818, 4.93403927, -0.22976818, -0.22976818, -0.22976818, 0.63086639, 1.10899671, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 1.58712703, -0.22976818, 1.77837916, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 2.16088342, -0.22976818, 2.16088342, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 9.42846428, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 0.91774459, -0.22976818, -0.22976818, 4.16903076, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 2.44776161, -0.22976818, -0.22976818, -0.22976818, 1.96963129, 1.96963129, 1.96963129, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 7.13343874, 5.98592598, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 3.02151799, 4.26465682, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 2.25650948, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 1.30024884, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 4.74278714, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 0.3439882 , -0.22976818, 0.3439882 , -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 0.53524033, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818, 3.49964831, -0.22976818, -0.22976818, -0.22976818, -0.22976818, -0.22976818])

]

g_a_group:

[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]

MLP:

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(solver=’lbfgs’, alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)

clf.fit(feature_vectors, g_a_group)


回答:

从 scikit-learn 的角度来看,你的数据在 .fit 调用中没有任何意义。特征向量应该是一个大小为 N x d 的矩阵,其中 N数据点的数量,d特征的数量,而你的第二个变量应该保存标签,因此它应该是长度为 N 的向量(或 N x k,其中 k 是每个点输出/标签的数量)。无论你的变量代表什么,它们的大小都不符合它们应该代表的内容。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注