我正在研究孤立森林。我实现了以下代码来构建包含iTrees的孤立森林。
import pandas as pdimport numpy as npimport randomfrom sklearn.model_selection import train_test_splitclass ExNode: def __init__(self,size): self.size=sizeclass InNode: def __init__(self,left,right,splitAtt,splitVal): self.left=left self.right=right self.splitAtt=splitAtt self.splitVal=splitValdef iForest(X,noOfTrees,sampleSize):forest=[]hlim=int(np.ceil(np.log2(max(sampleSize, 2))))for i in range(noOfTrees): X_train=X.sample(sampleSize) forest.append(iTree(X_train,0,hlim))return forestdef iTree(X,currHeight,hlim):if currHeight>=hlim or len(X)<=1: return ExNode(len(X))else: Q=X.columns q=random.choice(Q) p=random.choice(X[q].unique()) X_l=X[X[q]<p] X_r=X[X[q]>=p] return InNode(iTree(X_l,currHeight+1,hlim),iTree(X_r,currHeight+1,hlim),q,p)def pathLength(x,Tree,currHeight):if isinstance(Tree,ExNode): return currHeighta=Tree.splitAttif x[a]<Tree.splitVal: return pathLength(x,Tree.left,currHeight+1)else: return pathLength(x,Tree.right,currHeight+1)def _h(i): return np.log2(i) + 0.5772156649 def _c(n): if n > 2: h = _h(n-1) return 2*h - (2*(n - 1)/n) if n == 2: return 1 else: return 0def _anomaly_score(score, n_samples): score = -score/_c(n_samples) return 2**scoredf=pd.read_csv("db.csv")y_true=df['Target']df_data=df.drop('Target',1)sampleSize=256X_train, X_test, y_train, y_test = train_test_split(df_data, y_true, test_size=0.3)ifor=iForest(X_train,100,sampleSize)for index, row in test.iterrows(): sxn = 0; testLenLst = [] for tree in ifor: testLenLst.append(pathLength(row,tree,0)) if(len(testLenLst) != 0): ehx = (sum(testLenLst) / float(len(testLenLst))) if(_anomaly_score(ehx,sampleSize) >= .5): print("Anomaly S(x,n) " + str(_anomaly_score(ehx,sampleSize))) else: print("Normal S(x,n) " + str(_anomaly_score(ehx,sampleSize)))
事实上,真正的挑战在于我想展示一个iTree。为了做到这一点,我使用.fit()
函数来构建模型。但是.fit()
只能用于基于Python预定义算法构建的模型。而在我的案例中,是我自己开发了孤立森林算法。下面是我尝试构建模型以及展示iTree的方式。
from sklearn.tree import export_graphvizifor.fit(X_train)estimator = ifor.tree[1]export_graphviz(estimator, out_file='tree.dot', feature_names = df.feature_names, class_names = df.target_names, rounded = True, proportion = False, precision = 2, filled = True)from subprocess import callcall(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600'])from IPython.display import Image Image(filename = 'tree.png')
它显示了以下错误:尝试展示iTree时遇到的错误
回答:
你的问题不够清晰,但最佳实践是遵循如何在sklearn中编写自定义估计器并对其使用交叉验证?来编写自定义估计器,并编写fit()
方法的实现,附带适当的规则,否则会非常 confusing,
由于Python使用鸭子类型,尝试避免这种复杂性,并使用sklearn.BaseEstimator