我编写了两个程序,它们应该遵循相同的逻辑。但它们给出的答案却不同。
第一个程序-
train_data = train_features[:1710][:]train_label = label_features[:1710][:].ravel()test_data = train_features[1710:][:]test_label = label_features[1710:][:].ravel()def getAccuracy(ans): d = 0 for i in range(np.size(ans,0)): if(ans[i] == test_label[i]): d+=1 return (d*100)/float(np.size(ans,0))estimators = [('pps', pps.RobustScaler()), ('clf', LogisticRegression())]pipe = Pipeline(estimators)pipe = pipe.fit(train_data,train_label)ans = pipe.predict(test_data)getAccuracy(ans)
第二个程序-
train_data = train_features[:1710][:]train_label = label_features[:1710][:].ravel()test_data = train_features[1710:][:]test_label = label_features[1710:][:].ravel()def getAccuracy(ans): d = 0 for i in range(np.size(ans,0)): if(ans[i] == test_label[i]): d+=1 return (d*100)/float(np.size(ans,0))def preprocess(features): return pps.RobustScaler().fit_transform(features)train_data = preprocess(train_data)clf = LogisticRegression().fit(train_data,train_label)test_data = preprocess(test_data)ans = clf.predict(test_data)getAccuracy(ans)
第一个程序给出的结果是80.81,第二个程序给出的结果是84.92。为什么它们会不同?
回答:
你的第二个代码是无效的,因为你的“preprocess”函数对测试集进行了拟合,这是不应该发生的。另一方面,Pipeline只对训练数据拟合RobustScaler,然后对测试数据调用“transform”。