pandas.factorize 在整个数据框上的应用

pandas.factorize 将输入值编码为枚举类型或分类变量。

但是,如何轻松高效地转换数据框中的多个列呢?逆向映射步骤又该如何处理?

示例:这个数据框包含一些字符串值的列,比如“type 2”,我想将其转换为数值,并可能在以后将其转换回来。

enter image description here


回答:

如果你需要分别对每一列进行factorize操作,可以使用apply函数:

df = pd.DataFrame({'A':['type1','type2','type2'],
                   'B':['type1','type2','type3'],
                   'C':['type1','type3','type3']})
print (df)
       A      B      C
0  type1  type1  type1
1  type2  type2  type3
2  type2  type3  type3
print (df.apply(lambda x: pd.factorize(x)[0]))
   A  B  C
0  0  0  0
1  1  1  1
2  1  2  1

如果你需要对相同的字符串值赋予相同的数值,可以这样做:

print (df.stack().rank(method='dense').unstack())
     A    B    C
0  1.0  1.0  1.0
1  2.0  2.0  3.0
2  2.0  3.0  3.0

如果你只需要对某些列应用该函数,可以使用子集:

df[['B','C']] = df[['B','C']].stack().rank(method='dense').unstack()
print (df)
       A    B    C
0  type1  1.0  1.0
1  type2  2.0  3.0
2  type2  3.0  3.0

使用factorize的解决方案:

stacked = df[['B','C']].stack()
df[['B','C']] = pd.Series(stacked.factorize()[0], index=stacked.index).unstack()
print (df)
       A  B  C
0  type1  0  0
1  type2  1  2
2  type2  2  2

可以通过map函数使用dict进行逆向转换,你需要通过drop_duplicates来去除重复值:

vals = df.stack().drop_duplicates().values
b = [x for x in df.stack().drop_duplicates().rank(method='dense')]
d1 = dict(zip(b, vals))
print (d1)
{1.0: 'type1', 2.0: 'type2', 3.0: 'type3'}
df1 = df.stack().rank(method='dense').unstack()
print (df1)
     A    B    C
0  1.0  1.0  1.0
1  2.0  2.0  3.0
2  2.0  3.0  3.0
print (df1.stack().map(d1).unstack())
       A      B      C
0  type1  type1  type1
1  type2  type2  type3
2  type2  type3  type3

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注