我已经成功地使用R语言中的cluster包的pam函数进行了基于中心点的分区聚类,现在,我想使用这些结果将新的观测值归属到之前定义的聚类/中心点中。
换句话说,给定pam函数找到的k个聚类/中心点,哪个与初始数据集中未包含的额外观测值更接近?
x<-matrix(c(1,1.2,0.9,2.3,2,1.8, 3.2,4,3.1,3.9,3,4.4),6,2)x [,1] [,2][1,] 1.0 3.2[2,] 1.2 4.0[3,] 0.9 3.1[4,] 2.3 3.9[5,] 2.0 3.0[6,] 1.8 4.4pam(x,2)
观测值1、3和5为一组,观测值2、4和6为一组,观测值1和6是中心点:
Medoids: ID [1,] 1 1.0 3.2[2,] 6 1.8 4.4Clustering vector:[1] 1 2 1 2 1 2
现在,新的观测值y应该归属到哪个聚类/中心点?
y<-c(1.5,4.5)
哦,如果你有多个解决方案,计算时间在我的大数据集中是很重要的。
回答:
尝试以下方法以处理一般情况下的k个聚类:
k <- 2 # pam with k clustersres <- pam(x,k)y <- c(1.5,4.5) # new point# get the cluster centroid to which the new point is to be assigned to# break ties by taking the first medoid in case there are multiple ones# non-vectorized functionget.cluster1 <- function(res, y) which.min(sapply(1:k, function(i) sum((res$medoids[i,]-y)^2)))# vectorized function, much fasterget.cluster2 <- function(res, y) which.min(colSums((t(res$medoids)-y)^2))get.cluster1(res, y)#[1] 2get.cluster2(res, y)#[1] 2# comparing the two implementations (the vectorized function takes much les s time)library(microbenchmark)microbenchmark(get.cluster1(res, y), get.cluster2(res, y))#Unit: microseconds# expr min lq mean median uq max neval cld# get.cluster1(res, y) 31.219 32.075 34.89718 32.930 33.358 135.995 100 b# get.cluster2(res, y) 17.107 17.962 19.12527 18.817 19.245 41.483 100 a
扩展到任意距离函数:
# distance functioneuclidean.func <- function(x, y) sqrt(sum((x-y)^2))manhattan.func <- function(x, y) sum(abs(x-y))get.cluster3 <- function(res, y, dist.func=euclidean.func) which.min(sapply(1:k, function(i) dist.func(res$medoids[i,], y)))get.cluster3(res, y) # use Euclidean as default#[1] 2get.cluster3(res, y, manhattan.func) # use Manhattan distance#[1] 2