我想使用 sklearn 分类器训练一个模型来对数据条目进行分类(是,否),使用文本特征(内容)、数值特征(人口)和分类特征(位置)。
下面的模型仅使用文本数据来对每个条目进行分类。文本在导入分类器之前通过 TF-IDF 转换成稀疏矩阵。
有没有办法也添加/使用其他特征?这些特征不是稀疏矩阵格式,所以不确定如何将它们与文本稀疏矩阵结合起来。
#import libraries import string, re, nltk import pandas as pd from pandas import Series, DataFrame from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline # read data and remove empty lines dataset = pd.read_csv('sample_data.txt', sep='\t', names=['content','location','population','target']) .dropna(how='all') .dropna(subset=['target']) df = dataset[1:] #reset dataframe index df.reset_index(inplace = True) #add an extra column which is the length of text df['length'] = df['content'].apply(len) #create a dataframe that contains only two columns the text and the target class df_cont = df.copy() df_cont = df_cont.drop( ['location','population','length'],axis = 1) # function that takes in a string of text, removes all punctuation, stopwords and returns a list of cleaned text def text_process(mess): # lower case for string mess = mess.lower() # check characters and removes URLs nourl = re.sub(r'http\S+', ' ', mess) # check characters and removes punctuation nopunc = [char for char in nourl if char not in string.punctuation] # join the characters again to form the string and removes numbers nopunc = ''.join([i for i in nopunc if not i.isdigit()]) # remove stopwords return [ps.stem(word) for word in nopunc.split() if word not in set(stopwords.words('english'))] #split the data in train and test set and train/test the model cont_train, cont_test, target_train, target_test = train_test_split(df_cont['content'],df_cont['target'],test_size = 0.2,shuffle = True, random_state = 1) pipeline = Pipeline([('bag_of_words',CountVectorizer(analyzer=text_process)), ('tfidf',TfidfTransformer()), ('classifier',MultinomialNB())]) pipeline.fit(cont_train,target_train) predictions = pipeline.predict(cont_test) print(classification_report(predictions,target_test))
预期模型将返回以下结果:准确率、精确率、召回率、F1分数
回答:
我认为您需要对’位置’特征使用独热编码。给定数据的独热向量将是,
伦敦 – 100
曼彻斯特 – 010
爱丁堡 – 001
向量的长度是你数据中城市的数量。请注意,这里每个位都是一个特征。分类数据通常在输入机器学习算法之前转换为独热向量。
完成这些步骤后,您可以将整行拼接成一个一维数组,然后将其输入到分类器中。