内部错误:无法加载所有CUDA库

我在尝试运行这个Kaggle Jupyter笔记本的Python代码时,遇到了以下错误:

---------------------------------------------------------------------------InternalError                             Traceback (most recent call last)<ipython-input-40-be0fb0b18f3a> in <module>      1 #Defining Neural Network----> 2 model = Sequential()      3 #Non-trainable embeddidng layer      4 model.add(Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))      5 #LSTMc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)    528     self._self_setattr_tracking = False  # pylint: disable=protected-access    529     try:--> 530       result = method(self, *args, **kwargs)    531     finally:    532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-accessc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\keras\engine\sequential.py in __init__(self, layers, name)    105     """    106     # Skip the init in FunctionalModel since model doesn't have input/output yet--> 107     super(functional.Functional, self).__init__(  # pylint: disable=bad-super-call    108         name=name, autocast=False)    109     base_layer.keras_api_gauge.get_cell('Sequential').set(True)c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)    528     self._self_setattr_tracking = False  # pylint: disable=protected-access    529     try:--> 530       result = method(self, *args, **kwargs)    531     finally:    532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-accessc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\keras\engine\training.py in __init__(self, *args, **kwargs)    287     self._steps_per_execution = None    288 --> 289     self._init_batch_counters()    290     self._base_model_initialized = True    291 c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)    528     self._self_setattr_tracking = False  # pylint: disable=protected-access    529     try:--> 530       result = method(self, *args, **kwargs)    531     finally:    532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-accessc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\keras\engine\training.py in _init_batch_counters(self)    295     # `evaluate`, and `predict`.    296     agg = tf.VariableAggregation.ONLY_FIRST_REPLICA--> 297     self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg)    298     self._test_counter = tf.Variable(0, dtype='int64', aggregation=agg)    299     self._predict_counter = tf.Variable(c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\variables.py in __call__(cls, *args, **kwargs)    266       return cls._variable_v1_call(*args, **kwargs)    267     elif cls is Variable:--> 268       return cls._variable_v2_call(*args, **kwargs)    269     else:    270       return super(VariableMetaclass, cls).__call__(*args, **kwargs)c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\variables.py in _variable_v2_call(cls, initial_value, trainable, validate_shape, caching_device, name, variable_def, dtype, import_scope, constraint, synchronization, aggregation, shape)    248     if aggregation is None:    249       aggregation = VariableAggregation.NONE--> 250     return previous_getter(    251         initial_value=initial_value,    252         trainable=trainable,c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\variables.py in <lambda>(**kws)    241                         shape=None):    242     """Call on Variable class. Useful to force the signature."""--> 243     previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)    244     for _, getter in ops.get_default_graph()._variable_creator_stack:  # pylint: disable=protected-access    245       previous_getter = _make_getter(getter, previous_getter)c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\variable_scope.py in default_variable_creator_v2(next_creator, **kwargs)   2660   shape = kwargs.get("shape", None)   2661 -> 2662   return resource_variable_ops.ResourceVariable(   2663       initial_value=initial_value,   2664       trainable=trainable,c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\variables.py in __call__(cls, *args, **kwargs)    268       return cls._variable_v2_call(*args, **kwargs)    269     else:--> 270       return super(VariableMetaclass, cls).__call__(*args, **kwargs)    271     272 c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py in __init__(self, initial_value, trainable, collections, validate_shape, caching_device, name, dtype, variable_def, import_scope, constraint, distribute_strategy, synchronization, aggregation, shape)   1600       self._init_from_proto(variable_def, import_scope=import_scope)   1601     else:-> 1602       self._init_from_args(   1603           initial_value=initial_value,   1604           trainable=trainable,c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py in _init_from_args(self, initial_value, trainable, collections, caching_device, name, dtype, constraint, synchronization, aggregation, distribute_strategy, shape)   1743               self._update_uid = initial_value.checkpoint_position.restore_uid   1744               initial_value = initial_value.wrapped_value-> 1745             initial_value = ops.convert_to_tensor(initial_value,   1746                                                   name="initial_value",   1747                                                   dtype=dtype)c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\profiler\trace.py in wrapped(*args, **kwargs)    161         with Trace(trace_name, **trace_kwargs):    162           return func(*args, **kwargs)--> 163       return func(*args, **kwargs)    164     165     return wrappedc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)   1564    1565     if ret is None:-> 1566       ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)   1567    1568     if ret is NotImplemented:c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\tensor_conversion_registry.py in _default_conversion_function(***failed resolving arguments***)     50 def _default_conversion_function(value, dtype, name, as_ref):     51   del as_ref  # Unused.---> 52   return constant_op.constant(value, dtype, name=name)     53      54 c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\constant_op.py in constant(value, dtype, shape, name)    269     ValueError: if called on a symbolic tensor.    270   """--> 271   return _constant_impl(value, dtype, shape, name, verify_shape=False,    272                         allow_broadcast=True)    273 c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)    281       with trace.Trace("tf.constant"):    282         return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)--> 283     return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)    284     285   g = ops.get_default_graph()c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\constant_op.py in _constant_eager_impl(ctx, value, dtype, shape, verify_shape)    306 def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):    307   """Creates a constant on the current device."""--> 308   t = convert_to_eager_tensor(value, ctx, dtype)    309   if shape is None:    310     return tc:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\framework\constant_op.py in convert_to_eager_tensor(value, ctx, dtype)    103     except AttributeError:    104       dtype = dtypes.as_dtype(dtype).as_datatype_enum--> 105   ctx.ensure_initialized()    106   return ops.EagerTensor(value, ctx.device_name, dtype)    107 c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\eager\context.py in ensure_initialized(self)    534       opts = pywrap_tfe.TFE_NewContextOptions()    535       try:--> 536         config_str = self.config.SerializeToString()    537         pywrap_tfe.TFE_ContextOptionsSetConfig(opts, config_str)    538         if self._device_policy is not None:c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\eager\context.py in config(self)    962     """Return the ConfigProto with all runtime deltas applied."""    963     # Ensure physical devices have been discovered and config has been imported--> 964     self._initialize_physical_devices()    965     966     config = config_pb2.ConfigProto()c:\users\kim\appdata\local\programs\python\python38\lib\site-packages\tensorflow\python\eager\context.py in _initialize_physical_devices(self, reinitialize)   1291         return   1292 -> 1293       devs = pywrap_tfe.TF_ListPhysicalDevices()   1294       self._physical_devices = [   1295           PhysicalDevice(name=d.decode(), device_type=d.decode().split(":")[1])InternalError: Cannot dlopen all CUDA libraries.

我该如何解决这个问题?


回答:

好的,我尝试了几种方法,在安装了tensorflow-gpu之后,它工作了。也许这也可以帮助其他人解决这个问题:

pip install tensorflow-gpu

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注