在我的实验中,MxNet可能会忘记保存我网络的一些参数。
我正在研究mxnet的gluoncv包 (https://gluon-cv.mxnet.io/index.html)。为了从工程师那里学习编程技能,我手动生成了一个使用‘gluoncv.model_zoo.ssd.SSD’的SSD。我用来初始化这个类的参数与官方‘ssd_512_resnet50_v1_voc’网络的参数相同,除了‘classes=(‘car’, ‘pedestrian’, ‘truck’, ‘trafficLight’, ‘biker’)’。
from gluoncv.model_zoo.ssd import SSDimport mxnet as mxname = 'resnet50_v1'base_size = 512features=['stage3_activation5', 'stage4_activation2']filters=[512, 512, 256, 256]sizes=[51.2, 102.4, 189.4, 276.4, 363.52, 450.6, 492]ratios=[[1, 2, 0.5]] + [[1, 2, 0.5, 3, 1.0/3]] * 3 + [[1, 2, 0.5]] * 2steps=[16, 32, 64, 128, 256, 512]classes=('car', 'pedestrian', 'truck', 'trafficLight', 'biker')pretrained=Truenet = SSD(network = name, base_size = base_size, features = features, num_filters = filters, sizes = sizes, ratios = ratios, steps = steps, pretrained=pretrained, classes=classes)
我尝试将一个手工制作的数据 x输入到这个网络中,它给出了以下错误。
x = mx.nd.zeros(shape=(batch_size,3,base_size,base_size))cls_preds, box_preds, anchors = net(x)
RuntimeError: Parameter 'ssd0_expand_trans_conv0_weight' has not been initialized. Note that you should initialize parameters and create Trainer with Block.collect_params() instead of Block.params because the later does not include Parameters of nested child Blocks
这是合理的。SSD使用函数‘gluoncv.nn.feature.FeatureExpander’在‘_resnet50_v1_’上添加新层,而我忘记初始化它们。因此,我使用以下代码。
net.initialize()
哦,它给了我很多警告。
v.initialize(None, ctx, init, force_reinit=force_reinit)C:\Users\Bird\AppData\Local\conda\conda\envs\ssd\lib\site-packages\mxnet\gluon\parameter.py:687: UserWarning: Parameter 'ssd0_resnetv10_stage4_batchnorm9_running_mean' is already initialized, ignoring. Set force_reinit=True to re-initialize. v.initialize(None, ctx, init, force_reinit=force_reinit)C:\Users\Bird\AppData\Local\conda\conda\envs\ssd\lib\site-packages\mxnet\gluon\parameter.py:687: UserWarning: Parameter 'ssd0_resnetv10_stage4_batchnorm9_running_var' is already initialized, ignoring. Set force_reinit=True to re-initialize. v.initialize(None, ctx, init, force_reinit=force_reinit)
作为SSD基础的‘_resnet50_v1_’是预训练的,因此这些参数无法被安装。然而,这些警告让人很烦。
我怎样才能关闭它们?
然而,这里出现了第一个问题。我想保存网络的参数。
net.save_params('F:/Temps/Models_tmp/' +'myssd.params')
‘_resnet50_v1_’的参数文件(‘resnet50_v1-c940b1a0.params’)是97.7MB;然而,我的参数文件只有9.96MB。是否有一些神奇的技术可以压缩这些参数?
为了测试这项新技术,我打开一个新的控制台并重新构建相同的网络。然后,我加载保存的参数并向其输入数据。
net.load_params('F:/Temps/Models_tmp/' +'myssd.params')x = mx.nd.zeros(shape=(batch_size,3,base_size,base_size))
初始化错误再次出现。
RuntimeError: Parameter ‘ssd0_expand_trans_conv0_weight’ has not been initialized. Note that you should initialize parameters and create Trainer with Block.collect_params() instead of Block.params because the later does not include Parameters of nested child Blocks
这不可能是正确的,因为保存的文件’myssd.params’应该包含我网络的所有已安装参数。
为了找到‘_ssd0_expand_trans_conv0’块,我对‘gluoncv.nn.feature. FeatureExpander_’进行了更深入的研究。我使用‘mxnet.gluon. nn.Conv2D’来替换‘mx.sym.Convolution’在‘FeatureExpander’函数中。
''' y = mx.sym.Convolution( y, num_filter=num_trans, kernel=(1, 1), no_bias=use_bn, name='expand_trans_conv{}'.format(i), attr={'__init__': weight_init}) ''' Conv1 = nn.Conv2D(channels = num_trans,kernel_size = (1, 1),use_bias = use_bn,weight_initializer = weight_init) y = Conv1(y) Conv1.initialize(verbose = True) ''' y = mx.sym.Convolution( y, num_filter=f, kernel=(3, 3), pad=(1, 1), stride=(2, 2), no_bias=use_bn, name='expand_conv{}'.format(i), attr={'__init__': weight_init}) ''' Conv2 = nn.Conv2D(channels = f,kernel_size = (3, 3),padding = (1, 1),strides = (2, 2),use_bias = use_bn, weight_initializer = weight_init) y = Conv2(y) Conv2.initialize(verbose = True)
这些新块可以手动初始化。然而,MxNet仍然报告相同错误。似乎手动初始化没有效果。
我怎样才能保存我网络的所有参数并恢复它们?
回答:
关于保存和加载的主题,有一个教程可能对你有帮助:https://mxnet.apache.org/versions/1.6/api/python/docs/tutorials/packages/gluon/blocks/save_load_params.html