MNIST图像的格式是什么?

我已经解压了MNIST训练集中的第一张图像,并且可以访问到(28,28)的矩阵。

enter image description here

[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   3  18  18  18 126 136  175  26 166 255 247 127   0   0   0   0] [  0   0   0   0   0   0   0   0  30  36  94 154 170 253 253 253 253 253  225 172 253 242 195  64   0   0   0   0] [  0   0   0   0   0   0   0  49 238 253 253 253 253 253 253 253 253 251   93  82  82  56  39   0   0   0   0   0] [  0   0   0   0   0   0   0  18 219 253 253 253 253 253 198 182 247 241    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0  80 156 107 253 253 205  11   0  43 154    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0  14   1 154 253  90   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0 139 253 190   2   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0  11 190 253  70   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0  35 241 225 160 108   1    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0  81 240 253 253 119   25   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  45 186 253 253  150  27   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  16  93 252  253 187   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 249  253 249  64   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  46 130 183 253  253 207   2   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0  39 148 229 253 253 253  250 182   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0  24 114 221 253 253 253 253 201   78   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0  23  66 213 253 253 253 253 198  81   2    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0  18 171 219 253 253 253 253 195  80   9   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0  55 172 226 253 253 253 253 244 133  11   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0 136 253 253 253 212 135 132  16   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0] [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0]]

我想对它进行一些图像处理,比如转换为灰度图然后二值化(用于机器学习),但我对正在处理的图像格式感到困惑。如果这是一个(28, 28, 3)的图像,显然它是一个具有3个通道的RGB图像。然而,这是一个(28, 28)的图像,每个像素值在离散范围[0, 255]内,这相当奇怪。这张图像已经是灰度图了吗?我只需要归一化像素值吗?归一化到底包含什么?我是否应该将扁平化的向量乘以标量1/(所有能量值之和)

谢谢!


回答:

这些图像是28×28像素的灰度图像,采用8位量化(因此范围是[0-255])。据说这些图像原本是二值黑白图像,但在调整大小过程中由于抗锯齿处理导致它们有了额外的灰度值。请参见这里获取更多详情。

通常,你会通过将所有值除以255来进行归一化(而不是所有像素值的总和)。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注