我是数据科学的新手,我能够构建一个模型并使用OneHotEncoder设置一个管道。然而,当我调用我构建的函数时,它会报错。请查看下面的内容并提供建议。提前感谢!
clf = Pipeline(steps=[('ohe', OneHotEncoder()), ('rfc', RandomForestClassifier(n_estimators=1000,criterion="entropy",max_features=None))]) pickle.dump(clf,open('model.pkl','wb'))# load modelmodel = pickle.load(open('model.pkl','rb'))def predict(A,B,C,D,E,F,G): result = model.predict(x) # send back to browser output = {'results': int(result[0])} # return data return jsonify(results=output)
调用函数:
predict('A','B','C','D','E','F','G')
错误:
NotFittedError: This OneHotEncoder instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.
回答:
在将数据输入RandomForestClassifier之前,使用这个来转换你的数据:
def trainPipeline(pipeline, X, y): X_transformed = X for name, step in pipeline.steps[:-1]: X_transformed = step.fit_transform(X_transformed, y) pipeline.steps[-1][1].fit(X_transformed, y)
注意:这仅在你的管道有两个步骤且第一步是OneHotEncoder()时有效。