我知道如何在每个epoch后保存模型:
savemodel = ModelCheckpoint(filepath='models/model_{epoch:02d}-{loss:.2f}.h5')model.fit(X, Y, batch_size=4, epochs=32, verbose=1, callbacks=[savemodel])
如何创建自定义回调函数来记录特定信息:
def write_metrics(): with open('log.txt', 'a') as f: # 追加到日志文件 f.write('{epoch:02d}: loss = {loss:.1f}')model.fit(X, Y, batch_size=4, epochs=32, verbose=1, callbacks=[savemodel, write_metrics])
?
使用这段代码不会工作,因为{loss}
和{epoch}
在f.write('{epoch:02d}: loss = {loss:.1f}')
中没有定义。
回答:
这里是解决方案,通过子类化Callback
:
from keras.callbacks import Callbackclass MyLogger(Callback): def on_epoch_end(self, epoch, logs=None): with open('log.txt', 'a+') as f: f.write('%02d %.3f\n' % (epoch, logs['loss']))
然后
mylogger = MyLogger()model.fit(X, Y, batch_size=32, epochs=32, verbose=1, callbacks=[mylogger])
或者甚至
model.fit(X, Y, batch_size=32, epochs=32, verbose=1, callbacks=[MyLogger()])