我正在使用UCI乳腺癌数据集,并试图找出权重最高的前三个特征。我已经能够使用logmodel.coef_
找到所有特征的权重,但如何获取特征名称呢?以下是我的代码、输出和数据集(从scikit导入的)。
from sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_breast_cancerfrom sklearn.linear_model import LogisticRegressioncancer = load_breast_cancer()X_train, X_test, y_train, y_test = train_test_split( cancer.data, cancer.target, stratify=cancer.target, random_state=42)logmodel = LogisticRegression(C=1.0).fit(X_train, y_train)logmodel.coef_[0]
上述代码输出权重数组。使用这些权重,我如何获取相关的特征名称?
Output: array([ 1.90876683e+00, 9.98788148e-02, -7.65567571e-02, 1.30875965e-03, -1.36948317e-01, -3.86693503e-01, -5.71948682e-01, -2.83323656e-01, -2.23813863e-01, -3.50526844e-02, 3.04455316e-03, 1.25223693e+00, 9.49523571e-02, -9.63789785e-02, -1.32044174e-02, -2.43125981e-02, -5.86034313e-02, -3.35199227e-02, -4.10795998e-02, 1.53205924e-03, 1.24707244e+00, -3.19709151e-01, -9.61881472e-02, -2.66335879e-02, -2.44041661e-01, -1.24420873e+00, -1.58319440e+00, -5.78354663e-01, -6.80060645e-01, -1.30760323e-01])
谢谢。任何帮助我都会非常感激。
回答:
这将完成任务:
import numpy as npcoefs=logmodel.coef_[0]top_three = np.argpartition(coefs, -3)[-3:]print(cancer.feature_names[top_three])
这将输出
['worst radius' 'texture error' 'mean radius']
请注意,这些特征是前三名,但它们之间不一定是排序的。如果你希望它们排序,可以这样做:
import numpy as npcoefs=logmodel.coef_[0]top_three = np.argpartition(coefs, -3)[-3:]top_three_sorted=top_three[np.argsort(coefs[top_three])]print(cancer.feature_names[top_three_sorted])