逻辑回归评估的Sklearn Python Log Loss错误

我使用逻辑回归训练了一个模型,现在需要用Log Loss来评估其准确性。以下是数据的一些细节:

特征/ X

   Principal terms age Gender weekend Bachelor  HighSchoolerBelow college0   1000     30    45   0       0       0               1              01   1000     30    33   1       0       1               0              02   1000     15    27   0       0       0               0              1

标签/ Y

array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION'], dtype=object)

逻辑回归模型:

from sklearn.linear_model import LogisticRegressionlogreg = LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial')Feature = df[['Principal','terms','age','Gender','weekend']]Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)Feature.drop(['Master or Above'], axis = 1,inplace=True)X = FeatureX= preprocessing.StandardScaler().fit(X).transform(X)y = df['loan_status'].valuesX_train, X_test, y_train, lg_y_test = train_test_split(X, y, test_size=0.3, random_state=4)# we create an instance of Neighbours Classifier and fit the data.logreg.fit(X_train, y_train)lg_loan_status = logreg.predict(X_test)lg_loan_status

现在我需要计算Jaccard, F1-score和LogLoss

这是我的单独测试数据集:

test_df['due_date'] = pd.to_datetime(test_df['due_date'])test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])test_df['dayofweek'] = test_df['effective_date'].dt.dayofweektest_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3)  else 0)test_df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)# test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)Feature = test_df[['Principal','terms','age','Gender','weekend']]Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)Feature.drop(['Master or Above'], axis = 1,inplace=True)Feature.head()X = FeatureY = test_df['loan_status'].valuesFeature.head()    Principal terms age Gender weekend Bechalor HighSchoolorBelow  college0   1000.0    30.0  50.0 female  0.0    0               1            01   300.0      7.0  35.0  male   1.0    1               0            02   1000.0    30.0  43.0 female  1.0    0               0            1

这是我尝试过的方法:

# Evaluation for Logistic RegressionX_train, X_test, y_train, lg_y_test = train_test_split(X, y, test_size=0.3, random_state=3)lg_jaccard = jaccard_similarity_score(lg_y_test, lg_loan_status, normalize=False)lg_f1_score = f1_score(lg_y_test, lg_loan_status, average='micro')lg_log_loss = log_loss(lg_y_test, lg_loan_status)print('Jaccard is : {}'.format(lg_jaccard))print('F1-score is : {}'.format(lg_f1_score))print('Log Loss is : {}'.format(lg_log_loss))

但它返回了以下错误:

ValueError: could not convert string to float: ‘COLLECTION’

更新:这是lg_y_test

['PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION''PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION']

回答:

问题如下:

要计算log_loss,你需要得到预测的概率。如果你只提供了预测的类别(即概率最高的类别),这个指标是无法计算的。

Sklearn提供了predict_proba方法,只要可能就应该使用它,如下所示:

lg_loan_status_probas = logreg.predict_proba(X_test)lg_log_loss = log_loss(lg_y_test, lg_loan_status_probas)

Related Posts

无法将字符串转换为浮点数: ‘CC6000’

我正在尝试构建一个机器学习模型,以预测给定数据集中清算…

如何在不使用循环的情况下获取NumPy数组中每个元素大于或小于的元素索引?

我正在从头开始编写决策树算法,目前我试图将数据分成几组…

Keras图像分类预测在图像调整大小时的错误

我有一个训练好的模型,该模型已被训练用于识别不同的文档…

如何在MATLAB中计算梯度?

我正在进行行人步伐检测(加速度)。我想从我的滤波信号中…

在矩阵乘法中出现错误:内层形状(1)和(2)的张量,其形状分别为684,1和2,1,且transposeA=false和transposeB=false时必须匹配

我是人工智能和TensorFlow.js的初学者,目前…

更好的方法来连接ConvLSTM2D模型和表格数据模型

我已经构建了一个模型,它以时间序列的3张图像和5个数值…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注