我在实现LSTM时遇到了一些问题。我不确定我的实现是否正确,或者这只是一个过拟合的问题。我使用LSTM进行作文评分,对文本进行0到10分(或其他范围的分数)的评分。我使用了ASAP kaggle竞赛数据作为训练数据之一。
然而,主要目标是在一个私有数据集上实现良好的性能,该数据集大约有500个样本。这500个样本包括验证集和训练集。我之前做了一些实验,成功让模型运行,但后来调整了一些东西后,模型就不再适合了。模型完全没有改进。我还以更清洁的方式重新实现了代码,使用了更多面向对象的代码,但仍然无法重现之前的结果。
然而,我让模型适应了我的数据,只是存在严重的过拟合。我不确定这是一个某种实现问题还是仅仅是过拟合,但我无法让模型正常工作。在ASAP数据的第一组作文上,我使用LSTM最多只能达到0.35的kappa值。出于某种奇怪的原因,我可以让单层全连接模型达到0.75的kappa值。我认为这是一个实现问题,但我并不确定。
这是我的旧代码:
train.py
import gensimimport numpy as npimport pandas as pdimport torchfrom sklearn.metrics import cohen_kappa_scorefrom torch import nnimport torch.utils.data as data_utilsfrom torch.optim import Adamfrom dataset import AESDatasetfrom network import Networkfrom optimizer import Rangerfrom qwk import quadratic_weighted_kappa, kappabatch_size = 32device = "cuda:0"torch.manual_seed(1000)# Load data from csvfile_name = "data/data_new.csv"data = pd.read_csv(file_name)arr = data.to_numpy()text = arr[:, :2]text = [str(line[0]) + str(line[1]) for line in text]text = [gensim.utils.simple_preprocess(line) for line in text]score = arr[:,2]score = [sco*6 for sco in score]score = np.asarray(score, dtype=int)train_dataset = AESDataset(text_arr=text[:400], scores=score[:400])test_dataset = AESDataset(text_arr=text[400:], scores=score[400:])score = torch.tensor(score).view(-1,1).long().to(device)train_loader = data_utils.DataLoader(train_dataset,shuffle=True, batch_size=batch_size, drop_last=True)test_loader = data_utils.DataLoader(test_dataset,shuffle=True,batch_size=batch_size, drop_last=True)out_class = 61epochs = 1000model = Network(out_class).to(device)model.load_state_dict(torch.load("model/best_model"))y_onehot = torch.FloatTensor(batch_size, out_class).to(device)optimizer = Adam(model.parameters())criti = torch.nn.CrossEntropyLoss()# model, optimizer = amp.initialize(model, optimizer, opt_level="O2")step = 0for i in range(epochs): #Testing if i % 1 == 0: total_loss = 0 total_kappa = 0 total_batches = 0 model.eval() for (text, score) in test_loader: out = model(text) out_score = torch.argmax(out, 1) y_onehot.zero_() y_onehot.scatter_(1, score, 1) kappa_l = cohen_kappa_score(score.view(batch_size).tolist(), out_score.view(batch_size).tolist()) score = score.view(-1) loss = criti(out, score.view(-1)) total_loss += loss total_kappa += kappa_l total_batches += 1 print(f"Epoch {i} Testing kappa {total_kappa/total_batches} loss {total_loss/total_batches}") with open(f"model/epoch_{i}", "wb") as f: torch.save(model.state_dict(),f) model.train() #Training for (text, score) in train_loader: optimizer.zero_grad() step += 1 out = model(text) out_score = torch.argmax(out,1) y_onehot.zero_() y_onehot.scatter_(1, score, 1) kappa_l = cohen_kappa_score(score.view(batch_size).tolist(),out_score.view(batch_size).tolist()) loss = criti(out, score.view(-1)) print(f"Epoch {i} step {step} kappa {kappa_l} loss {loss}") loss.backward() optimizer.step()
dataset.py
import gensimimport torchimport numpy as npclass AESDataset(torch.utils.data.Dataset): def __init__(self, text_arr, scores): self.data = text_arr self.scores = scores self.w2v_model = ("w2vec_model_all") self.max_len = 500 def __getitem__(self, item): vector = [] essay = self.data[item] pad_vec = [1 for i in range(300)] for i in range(self.max_len - len(essay)): vector.append(pad_vec) for word in essay: word_vec = pad_vec try: word_vec = self.w2v_model[word] except: #print(f"Skipping word as word {word} not in dictionary") word_vec = pad_vec vector.append(word_vec) #print(len(vector)) vector = np.stack(vector) tensor = torch.tensor(vector[:self.max_len]).float().to("cuda") score = self.scores[item] score = torch.tensor(score).long().to("cuda").view(1) return tensor, score def __len__(self): return len(self.scores)
network.py
import torch.nn as nnimport torchimport torch.nn.functional as Fclass Network(nn.Module): def __init__(self, output_size): super(Network, self).__init__() self.lstm = nn.LSTM(300,500,1, batch_first=True) self.dropout = nn.Dropout(p=0.5) #self.l2 = nn.L2 self.linear = nn.Linear(500,output_size) def forward(self,x): x, _ = self.lstm(x) x = x[:,-1,:] x = self.dropout(x) x = self.linear(x) return x
我的新代码:https://github.com/Clement-Hui/EssayGrading
回答:
我认为问题出在训练代码上,因为你使用了LSTM,你应该在每个epoch后清空隐藏状态和细胞状态,并在每个批次后将其从计算图中分离出来。
network.py
import torch.nn as nnimport torchimport torch.nn.functional as Fclass Network(nn.Module): def __init__(self, output_size): super(Network, self).__init__() self.lstm = nn.LSTM(300,500,1, batch_first=True) self.dropout = nn.Dropout(p=0.5) #self.l2 = nn.L2 self.linear = nn.Linear(500,output_size) def forward(self,x,hidden): x, hidden = self.lstm(x,hidden) x = x.contiguous().view(-1, 500) x = self.dropout(x) x = self.linear(x) return x , hidden def init_hidden(self,batch_size): weights = next(self.parameters()).data hidden = (weights.new(1 , batch_size,500).zero_().cuda(), weights.new(1 , batch_size,500).zero_().cuda()) return hidden
train.py
# 你的代码用于初始化模型和数据以及所有其他内容for i in range(epochs): #测试 if i % 1 == 0: total_loss = 0 total_kappa = 0 total_batches = 0 model.eval() val_h = model.init_hidden(batch_size) # 初始化隐藏状态 for (text, score) in test_loader: # 为隐藏状态创建新变量,否则 # 我们将通过整个训练历史进行反向传播 val_h = tuple([each.data for each in val_h]) out , val_h = model(text,val_h) out_score = torch.argmax(out, 1) y_onehot.zero_() y_onehot.scatter_(1, score, 1) kappa_l = cohen_kappa_score(score.view(batch_size).tolist(), out_score.view(batch_size).tolist()) score = score.view(-1) loss = criti(out, score.view(-1)) total_loss += loss total_kappa += kappa_l total_batches += 1 print(f"Epoch {i} Testing kappa {total_kappa/total_batches} loss {total_loss/total_batches}") with open(f"model/epoch_{i}", "wb") as f: torch.save(model.state_dict(),f) model.train() #训练 h = model.init_hidden(batch_size) # 初始化隐藏状态 for (text, score) in train_loader: optimizer.zero_grad() step += 1 # 为隐藏状态创建新变量,否则 # 我们将通过整个训练历史进行反向传播 h = tuple([each.data for each in h]) out , h = model(text,h) out_score = torch.argmax(out,1) y_onehot.zero_() y_onehot.scatter_(1, score, 1) kappa_l = cohen_kappa_score(score.view(batch_size).tolist(),out_score.view(batch_size).tolist()) loss = criti(out, score.view(-1)) print(f"Epoch {i} step {step} kappa {kappa_l} loss {loss}") loss.backward() optimizer.step()
请告诉我提到的更改是否有效。