我对TensorFlow和LSTM架构还比较陌生。我在处理数据集的输入和输出(x_train, x_test, y_train, y_test)时遇到了问题。
我的输入的原始形状如下:
- x_train: (366,4)
- x_test: (104,4)
- y_train: (366,)
- y_test: (104,)
y_train和y_test是一系列股票价格。x_train和x_test是我用来预测股票价格的四个特征。
# 分割训练和测试数据
train_start_date = '2010-01-08'
train_end_date = '2017-01-06'
test_start_date = '2017-01-13'
test_end_date = '2019-01-04'
train = df.ix[train_start_date : train_end_date]
test = df.ix[test_start_date:test_end_date]
X_test = sentimentScorer(test)
X_train = sentimentScorer(train)
Y_test = test['prices']
Y_train = train['prices']
# 转换为LSTM输入的3D数组
X_test = X_test.reshape(1, 104, 4)
X_train = X_train.reshape(1, 366, 4)
model = Sequential()
model.add(LSTM(128, input_shape=(366,4), activation='relu', return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)
# 编译模型
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'],
)
model.fit(X_train,
Y_train,
epochs=3,
validation_data=(X_test, Y_test))
这是生成的错误:
> --------------------------------------------------------------------------- ValueError Traceback (most recent call> last) <ipython-input-101-fd4099583529> in <module>> 65 Y_train,> 66 epochs=3,> ---> 67 validation_data=(X_test, Y_test))> > c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py> in fit(self, x, y, batch_size, epochs, verbose, callbacks,> validation_split, validation_data, shuffle, class_weight,> sample_weight, initial_epoch, steps_per_epoch, validation_steps,> **kwargs) 1507 steps_name='steps_per_epoch', 1508 steps=steps_per_epoch,> -> 1509 validation_split=validation_split) 1510 1511 # Prepare validation data.> > c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py> in _standardize_user_data(self, x, y, sample_weight, class_weight,> batch_size, check_steps, steps_name, steps, validation_split)> 991 x, y = next_element> 992 x, y, sample_weights = self._standardize_weights(x, y, sample_weight,> --> 993 class_weight, batch_size)> 994 return x, y, sample_weights> 995 > > c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py> in _standardize_weights(self, x, y, sample_weight, class_weight,> batch_size) 1110 feed_input_shapes, 1111 > check_batch_axis=False, # Don't enforce the batch size.> -> 1112 exception_prefix='input') 1113 1114 if y is not None:> > c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_utils.py> in standardize_input_data(data, names, shapes, check_batch_axis,> exception_prefix)> 314 ': expected ' + names[i] + ' to have ' +> 315 str(len(shape)) + ' dimensions, but got array '> --> 316 'with shape ' + str(data_shape))> 317 if not check_batch_axis:> 318 data_shape = data_shape[1:]> > ValueError: Error when checking input: expected lstm_18_input to have> 3 dimensions, but got array with shape (366, 4)
回答:
你的代码基本上是正确的。
你的y_test
和y_train
应该是一个元素的数组或形状为(1,1)的数组,这没有关系。
不过你的输入形状是错误的,第一个LSTM应该这样设置:
model.add(LSTM(128, input_shape=(None,4), activation='relu', return_sequences=True))
注意None
,因为你的测试和训练序列长度不同,你不能指定它(Keras接受第一个维度未指定)。错误是由于长度分别为366和104引起的。如果你想在RNN中使用批处理,你应该使用keras.preprocessing.sequence.pad_sequences
进行零填充。
不需要在批处理中指定input_shape
,网络的其他部分应该没问题。
如果你在进行回归,而不是分类,可能是这种情况,你应该执行@Ankish Bansal提到的最后两个步骤,例如将损失函数改为mean squared error
,并将最后一层的输出值改为1而不是10。