lightgbm.basic.LightGBMError: 检查失败:(best_split_info.left_count) > (0)

有几个类似的问题,但我找不到一个似乎适合的解决方案。我正在使用LightGBM和Scikit-Optimize的BayesSearchCV。

full_pipeline = skl.Pipeline(steps=[('preprocessor', pre_processor),                                         ('estimator',    lgbm.sklearn.LGBMClassifier())])scorer=make_scorer(fl.lgb_focal_f1_score)lgb_tuner = sko.BayesSearchCV(full_pipeline, hyper_space, cv=5, refit=True, n_iter=num_calls,scoring=scorer)lgb_tuner.fit(balanced_xtrain, balanced_ytrain)

训练运行了一段时间后,出现了以下错误:

Traceback (most recent call last):  File "/var/training.py", line 134, in <module>    lgb_tuner.fit(balanced_xtrain, balanced_ytrain)  File "/usr/local/lib/python3.6/site-packages/skopt/searchcv.py", line 694, in fit    groups=groups, n_points=n_points_adjusted  File "/usr/local/lib/python3.6/site-packages/skopt/searchcv.py", line 579, in _step    self._fit(X, y, groups, params_dict)  File "/usr/local/lib/python3.6/site-packages/skopt/searchcv.py", line 423, in _fit    for parameters in parameter_iterable  File "/usr/local/lib/python3.6/site-packages/joblib/parallel.py", line 1041, in __call__    if self.dispatch_one_batch(iterator):  File "/usr/local/lib/python3.6/site-packages/joblib/parallel.py", line 859, in dispatch_one_batch    self._dispatch(tasks)  File "/usr/local/lib/python3.6/site-packages/joblib/parallel.py", line 777, in _dispatch    job = self._backend.apply_async(batch, callback=cb)  File "/usr/local/lib/python3.6/site-packages/joblib/_parallel_backends.py", line 208, in apply_async    result = ImmediateResult(func)  File "/usr/local/lib/python3.6/site-packages/joblib/_parallel_backends.py", line 572, in __init__    self.results = batch()  File "/usr/local/lib/python3.6/site-packages/joblib/parallel.py", line 263, in __call__    for func, args, kwargs in self.items]  File "/usr/local/lib/python3.6/site-packages/joblib/parallel.py", line 263, in <listcomp>    for func, args, kwargs in self.items]  File "/usr/local/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score    estimator.fit(X_train, y_train, **fit_params)  File "/usr/local/lib/python3.6/site-packages/sklearn/pipeline.py", line 335, in fit    self._final_estimator.fit(Xt, y, **fit_params_last_step)  File "/usr/local/lib/python3.6/site-packages/lightgbm/sklearn.py", line 857, in fit    callbacks=callbacks, init_model=init_model)  File "/usr/local/lib/python3.6/site-packages/lightgbm/sklearn.py", line 617, in fit    callbacks=callbacks, init_model=init_model)  File "/usr/local/lib/python3.6/site-packages/lightgbm/engine.py", line 252, in train    booster.update(fobj=fobj)  File "/usr/local/lib/python3.6/site-packages/lightgbm/basic.py", line 2467, in update    return self.__boost(grad, hess)  File "/usr/local/lib/python3.6/site-packages/lightgbm/basic.py", line 2503, in __boost    ctypes.byref(is_finished)))  File "/usr/local/lib/python3.6/site-packages/lightgbm/basic.py", line 55, in _safe_call    raise LightGBMError(decode_string(_LIB.LGBM_GetLastError()))lightgbm.basic.LightGBMError: 检查失败:(best_split_info.left_count) > (0) at /__w/1/s/python-package/compile/src/treelearner/serial_tree_learner.cpp, line 651 .

一些类似问题的回答建议可能是由于使用GPU引起的,但我没有可用的GPU。我不知道还有什么原因导致这个问题,或者如何尝试修复它。有人能提供建议吗?


回答:

我认为这是由于我的超参数限制设置错误,导致一个不应该被设置为零的超参数被设置为零了,尽管我不确定是哪一个。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注