我的任务是为一个电子邮件数据集在Python中创建一个分类算法:https://archive.ics.uci.edu/ml/datasets/spambase
我需要能够处理数据集,应用我的分类算法(我选择了3个朴素贝叶斯版本),将准确率分数打印到终端,并执行5或10折交叉验证,找出有多少电子邮件是垃圾邮件。
如你所见,我已经完成了一些任务,但缺少交叉验证和找出有多少电子邮件是垃圾邮件的部分。
import numpy as npimport pandas as pd import sklearn from sklearn.naive_bayes import BernoulliNBfrom sklearn.naive_bayes import GaussianNBfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.model_selection import train_test_splitfrom sklearn import metricsfrom sklearn.metrics import accuracy_score# Read datadataset = pd.read_csv('dataset.csv').values# What shuffle does? How it helps?np.random.shuffle(dataset)X = dataset[ : , :48 ]Y = dataset[ : , -1 ]X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = .33, random_state = 17)# Bernoulli Naive BayesBernNB = BernoulliNB(binarize = True)BernNB.fit(X_train, Y_train)y_expect = Y_testy_pred = BernNB.predict(X_test) print ("Bernoulli Accuracy Score: ")print (accuracy_score(y_expect, y_pred))# Multinomial Naive BayesMultiNB = MultinomialNB()MultiNB.fit(X_train, Y_train)y_pred = MultiNB.predict(X_test)print ("Multinomial Accuracy Score: ")print (accuracy_score(y_expect, y_pred))# Gaussian Naive BayesGausNB = GaussianNB()GausNB.fit(X_train, Y_train)y_pred = GausNB.predict(X_test)print ("Gaussian Accuracy Score: ")print (accuracy_score(y_expect, y_pred))# Bernoulli ALTERED Naive BayesBernNB = BernoulliNB(binarize = 0.1)BernNB.fit(X_train, Y_train)y_expect = Y_testy_pred = BernNB.predict(X_test) print ("Bernoulli 'Altered' Accuracy Score: ")print (accuracy_score(y_expect, y_pred))
我已经研究了交叉验证,并且认为我现在可以应用它,但我不明白如何找出有多少电子邮件是垃圾邮件?我已经有了不同版本的朴素贝叶斯算法的准确率,但如何实际找到垃圾邮件的数量呢?最后一列是1或0,定义了它是否为垃圾邮件?所以我不知道该如何处理这个问题
回答:
由于你的类别标签1表示垃圾邮件,你使用accuracy_score
计算的准确率值将告诉你正确识别为垃圾邮件的垃圾邮件数量。例如,90%的测试准确率意味着100封测试垃圾邮件中有90封被正确分类为垃圾邮件。
使用sklearn.metrics.confusion_matrix(y_expect, y_pred)
可以获得各个类别的详细信息。
例如:
如果y_expect = [1,1,0,0,1]
,这意味着你的测试数据中有3封垃圾邮件和2封非垃圾邮件,如果y_pred = [1,1,1,0,1]
,那么这意味着你的模型正确检测到了3封垃圾邮件,但也将1封非垃圾邮件检测为垃圾邮件。