我使用 kNN 来对标记的图像进行分类。分类完成后,我输出了一个混淆矩阵。我注意到一个标签,bottle
被错误应用的频率更高。
我移除了这个标签并再次测试,但随后发现另一个标签,shoe
被错误应用了,而上次它是正常的。
没有进行归一化,所以我不确定是什么导致了这种行为。测试显示,无论我移除多少个标签,这种情况都会继续。我不太确定应该发布多少代码,所以我会放一些相关的内容,并将剩余的代码放到 pastebin 上。
def confusionMatrix(classifier, train_DS_X, train_DS_y, test_DS_X, test_DS_y): # Will output a confusion matrix graph for the predicion y_pred = classifier.fit(train_DS_X, train_DS_y).predict(test_DS_X) labels = set(set(train_DS_y) | set(test_DS_y)) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels, rotation=45) plt.yticks(tick_marks, labels) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(test_DS_y , y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') #print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') #print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
主函数中的相关代码:
# Select training and test data PCA = decomposition.PCA(n_components=.95) zscorer = ZScoreMapper(param_est=('targets', ['rest']), auto_train=False) DS = getVoxels (1, .5) train_DS = DS[0] test_DS = DS[1] # Apply PCA and ZScoring train_DS = processVoxels(train_DS, True, zscorer, PCA) test_DS = processVoxels(test_DS, False, zscorer, PCA) print 3*"\n" # Select the desired features # If selecting samples or PCA, that must be the only feature featuresOfInterest = ['pca'] trainDSFeat = selectFeatures(train_DS, featuresOfInterest) testDSFeat = selectFeatures(test_DS, featuresOfInterest) train_DS_X = trainDSFeat[0] train_DS_y = trainDSFeat[1] test_DS_X = testDSFeat[0] test_DS_y = testDSFeat[1] # Optimization of neighbors # Naively searches for local max starting at numNeighbors lastScore = 0 lastNeightbors = 1 score = .0000001 numNeighbors = 5 while score > lastScore: lastScore = score lastNeighbors = numNeighbors numNeighbors += 1 #Classification neigh = neighbors.KNeighborsClassifier(n_neighbors=numNeighbors, weights='distance') neigh.fit(train_DS_X, train_DS_y) #Testing score = neigh.score(test_DS_X,test_DS_y ) # Confusion Matrix Output neigh = neighbors.KNeighborsClassifier(n_neighbors=lastNeighbors, weights='distance') confusionMatrix(neigh, train_DS_X, train_DS_y, test_DS_X, test_DS_y)
Pastebin: http://pastebin.com/U7yTs3vs
回答:
问题部分是由于我的轴标签错误导致的,当我以为自己移除了错误的标签时,实际上只是移除了一个随机的标签,这意味着错误的数据仍然在被分析。修正轴标签并移除实际错误的标签rest
后,得到的结果是:
我更改的代码是:cm = confusion_matrix(test_DS_y , y_pred, labels)
基本上,我是根据我的有序标签列表手动设置了顺序。