如何在使用sklearn库时,在逻辑回归模型中使用核函数?
logreg = LogisticRegression()logreg.fit(X_train, y_train)y_pred = logreg.predict(X_test)print(y_pred)print(confusion_matrix(y_test,y_pred))print(classification_report(y_test,y_pred))predicted= logreg.predict(predict)print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
回答:
这个问题问得很好,但目前scikit-learn
不支持核逻辑回归和ANOVA核函数。
不过,您可以自己实现它。
ANOVA核函数的示例1:
import numpy as npfrom sklearn.metrics.pairwise import check_pairwise_arraysfrom scipy.linalg import choleskyfrom sklearn.linear_model import LogisticRegressiondef anova_kernel(X, Y=None, gamma=None, p=1): X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1. / X.shape[1] diff = X[:, None, :] - Y[None, :, :] diff **= 2 diff *= -gamma np.exp(diff, out=diff) K = diff.sum(axis=2) K **= p return K# 基于所有数据点的X矩阵的核矩阵K = anova_kernel(X)R = cholesky(K, lower=False)# 定义模型clf = LogisticRegression()# 假设您已经分割了数据,这里train是训练集的索引clf.fit(R[train], y_train)preds = clf.predict(R[test])¨
Nyström方法的示例2:
from sklearn.kernel_approximation import Nystroemfrom sklearn.linear_model import LogisticRegressionfrom sklearn.pipeline import PipelineK_train = anova_kernel(X_train)clf = Pipeline([ ('nys', Nystroem(kernel='precomputed', n_components=100)), ('lr', LogisticRegression())])clf.fit(K_train, y_train)K_test = anova_kernel(X_test, X_train)preds = clf.predict(K_test)