我使用以下代码构建了一个Keras回归器:
from keras.models import Sequentialfrom keras.layers import Densefrom keras.wrappers.scikit_learn import KerasRegressorfrom sklearn.model_selection import cross_val_scorefrom sklearn.model_selection import KFoldfrom sklearn.preprocessing import StandardScalerfrom sklearn.pipeline import Pipelineimport numpy as nyimport pandasfrom numpy.random import seedseed(1)from tensorflow import set_random_seedset_random_seed(2)X = ny.array([[1,2], [3,4], [5,6], [7,8], [9,10]])sc_X=StandardScaler()X_train = sc_X.fit_transform(X)Y = ny.array([3, 4, 5, 6, 7])Y=ny.reshape(Y,(-1,1))sc_Y=StandardScaler()Y_train = sc_Y.fit_transform(Y)N = 5def brain(): #Create the brain br_model=Sequential() br_model.add(Dense(3, input_dim=2, kernel_initializer='normal',activation='relu')) br_model.add(Dense(2, kernel_initializer='normal',activation='relu')) br_model.add(Dense(1,kernel_initializer='normal')) #Compile the brain br_model.compile(loss='mean_squared_error',optimizer='adam') return br_modeldef predict(X,sc_X,sc_Y,estimator): prediction = estimator.predict(sc_X.fit_transform(X)) return sc_Y.inverse_transform(prediction)estimator = KerasRegressor(build_fn=brain, epochs=1000, batch_size=5,verbose=0)# print "Done"estimator.fit(X_train,Y_train)prediction = estimator.predict(X_train)print predict(X,sc_X,sc_Y,estimator)X_test = ny.array([[1.5,4.5], [7,8], [9,10]])print predict(X_test,sc_X,sc_Y,estimator)
我遇到的问题是代码每次预测的值不相同(例如,它在第一次预测(X)中对[9,10]预测为6.64,而在第二次预测(X_test)中预测为6.49)。完整的输出如下:
[2.9929883 4.0016675 5.0103474 6.0190268 6.6434317][3.096634 5.422326 6.4955378]
为什么我得到不同的值?我该如何解决这个问题?
回答:
问题出在这一行代码:
prediction = estimator.predict(sc_X.fit_transform(X))
每次你预测新数据的值时,你都在拟合一个新的缩放器。这就是差异的来源。试试:
prediction = estimator.predict(sc_X.transform(X))
在这种情况下,你使用的是预训练的缩放器。