keras ‘NoneType’对象没有属性 ‘_inbound_nodes’

我正在尝试编写一个鉴别器来评估图像的局部区域。因此,我从输入中生成32×32的非重叠局部区域,然后在新的轴上将它们连接起来。

我使用时间分布层的原因是,最终鉴别器应该对整个图像进行真假评估。因此,我尝试对每个局部区域单独进行前向传递,然后通过lambda层对所有局部区域的鉴别器输出进行平均:

def my_average(x):    x = K.mean(x, axis=1)    return xdef my_average_shape(input_shape):    shape = list(input_shape)    del shape[1]    return tuple(shape)def defineD(input_shape):    a = Input(shape=(256, 256, 1))    cropping_list = []    n_patches = 256/32    for x in range(256/32):        for y in  range(256/32):            cropping_list += [             K.expand_dims(                Cropping2D((( x * 32,  256 - (x+1) * 32), ( y * 32,  256 - (y+1) * 32)))(a)                , axis=1)            ]    x = Concatenate(1)(cropping_list)    x = TimeDistributed(Conv2D(4 * 8, 3, padding='same'))(x) #     x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 16    x = TimeDistributed(Conv2D(4 * 16, 3, padding='same'))(x)    x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 8    x = TimeDistributed(Conv2D(4 * 32, 3, padding='same'))(x)    x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 4    x = TimeDistributed(Flatten())(x)    x = TimeDistributed(Dense(2, activation='sigmoid'))(x)    x = Lambda(my_average, my_average_shape)(x)    return keras.models.Model(inputs=a, outputs=x)

不知为何我遇到了以下错误:

File "testing.py", line 41, in <module>    defineD((256,256,1) )  File "testing.py", line 38, in defineD    return keras.models.Model(inputs=a, outputs=x)  File "/usr/local/lib/python2.7/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper    return func(*args, **kwargs)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 93, in __init__    self._init_graph_network(*args, **kwargs)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 237, in _init_graph_network    self.inputs, self.outputs)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1353, in _map_graph_network    tensor_index=tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1340, in build_map    node_index, tensor_index)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 1312, in build_map    node = layer._inbound_nodes[node_index]AttributeError: 'NoneType' object has no attribute '_inbound_nodes'

回答:

你需要将裁剪操作放在一个函数中,然后在Lambda层中使用该函数:

def my_cropping(a):    cropping_list = []    n_patches = 256/32    for x in range(256//32):        for y in  range(256//32):            cropping_list += [             K.expand_dims(                Cropping2D((( x * 32,  256 - (x+1) * 32), ( y * 32,  256 - (y+1) * 32)))(a)                , axis=1)            ]    return cropping_list

使用方法如下:

cropping_list = Lambda(my_cropping)(a)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注