解释,然后是代码,然后是输出,最后是错误信息:
看起来Flatten层没有正常工作,输出形状取决于批量大小(当我设置BATCH_SIZE=32
时,[1,32768]
变成了[1,16384]
)。我实在搞不明白自己哪里做错了,或者如何修复这个问题。我已经查看了Keras文档中关于Flatten和Dense层的部分。此外,我使用的是TensorFlow后端,并且这确实反映在keras.json
文件中。
这是我的代码:
BATCH_SIZE = 64EPOCHS = 1000EPOCH_STEP = 50vgg = keras.applications.vgg16.VGG16(include_top=False,weights='imagenet',input_shape=(48,48,3))vgg_input = vgg.inputsvgg_output = vgg.outputs#freeze the vgg layersfor layer in vgg.layers: layer.trainable = Falseprint('~~~~~~~~~~~~~~~~~~~~~~Tensors~~~~~~~~~~~~~~')print('vgg_output tensor:')print(vgg_output)print()model_tensor = Flatten()(vgg_output)print('flattened vgg_output tensor:')print(model_tensor)print()model_tensor = Dense(32, activation='relu')(model_tensor)print('dense FC flattened vgg_output tensor:')print(model_tensor)print('~~~~~~~~~~~~~~~~~~~~~~Tensors~~~~~~~~~~~~~~')model_tensor = Dense(2, activation='softmax')(model_tensor)model = Model(inputs=vgg_input,outputs=model_tensor)print('Model architecture made')#CHOSEN ARBITRARILY FOR NOWmodel.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])print('Model Compiled') print(model.summary())#train top modelval_batch, val_labels = dataGenerator.generateDataBatch(256)print('validation batch loaded')batch, labels = dataGenerator.generateDataBatch(2048)print('training batch loaded')print('t-batch shape: ' + str(batch.shape))print('t-batch lable shape: ' + str(labels.shape)) model.fit(x=batch,y=labels,batch_size=BATCH_SIZE,epochs=EPOCHS,verbose=2,validati on_data=(val_batch,val_labels),shuffle=True)
打印输出:
Printed Info:~~~~~~~~~~~~~~~~~~~~~~Tensors~~~~~~~~~~~~~~vgg_output tensor:[<tf.Tensor 'block5_pool/MaxPool:0' shape=(?, 1, 1, 512) dtype=float32>]flattened vgg_output tensor:Tensor("flatten_1/Reshape:0", shape=(?, ?), dtype=float32)dense FC flattened vgg_output tensor:Tensor("dense_1/Relu:0", shape=(?, 32), dtype=float32)~~~~~~~~~~~~~~~~~~~~~~Tensors~~~~~~~~~~~~~~_________________________________________________________________Layer (type) Output Shape Param #=================================================================input_1 (InputLayer) (None, 48, 48, 3) 0_________________________________________________________________block1_conv1 (Conv2D) (None, 48, 48, 64) 1792_________________________________________________________________block1_conv2 (Conv2D) (None, 48, 48, 64) 36928_________________________________________________________________block1_pool (MaxPooling2D) (None, 24, 24, 64) 0_________________________________________________________________block2_conv1 (Conv2D) (None, 24, 24, 128) 73856_________________________________________________________________block2_conv2 (Conv2D) (None, 24, 24, 128) 147584_________________________________________________________________block2_pool (MaxPooling2D) (None, 12, 12, 128) 0_________________________________________________________________block3_conv1 (Conv2D) (None, 12, 12, 256) 295168_________________________________________________________________block3_conv2 (Conv2D) (None, 12, 12, 256) 590080_________________________________________________________________block3_conv3 (Conv2D) (None, 12, 12, 256) 590080_________________________________________________________________block3_pool (MaxPooling2D) (None, 6, 6, 256) 0_________________________________________________________________block4_conv1 (Conv2D) (None, 6, 6, 512) 1180160_________________________________________________________________block4_conv2 (Conv2D) (None, 6, 6, 512) 2359808_________________________________________________________________block4_conv3 (Conv2D) (None, 6, 6, 512) 2359808_________________________________________________________________block4_pool (MaxPooling2D) (None, 3, 3, 512) 0_________________________________________________________________block5_conv1 (Conv2D) (None, 3, 3, 512) 2359808_________________________________________________________________block5_conv2 (Conv2D) (None, 3, 3, 512) 2359808_________________________________________________________________block5_conv3 (Conv2D) (None, 3, 3, 512) 2359808_________________________________________________________________block5_pool (MaxPooling2D) (None, 1, 1, 512) 0_________________________________________________________________flatten_1 (Flatten) (None, 512) 0_________________________________________________________________dense_1 (Dense) (None, 32) 16416_________________________________________________________________dense_2 (Dense) (None, 2) 66=================================================================Total params: 14,731,170Trainable params: 16,482Non-trainable params: 14,714,688_________________________________________________________________NoneModel CompiledModel architecture madeModel Compiledvalidation batch loadedtraining batch loadedt-batch shape: (2048, 48, 48, 3)t-batch lable shape: (2048, 2)
错误信息的最后一部分(我可以添加所有内容,但其余部分看起来没有帮助):
tensorflow.python.framework.errors_impl.InvalidArgumentError: Matrix size-incompatible: In[0]: [1,32768], In[1]: [512,32] [[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](flatten_1/Reshape, dense_1/kernel/read)]]
编辑:在model.compile()
之后立即添加了print(model.summary())
的输出。
回答: