我以为mask_zero=True
会在输入值为0时输出0,这样后续的层可以跳过计算或其他操作。
mask_zero
是如何工作的?
示例:
data_in = np.array([ [1, 2, 0, 0]])data_in.shape>>> (1, 4)# modelx = Input(shape=(4,))e = Embedding(5, 5, mask_zero=True)(x)m = Model(inputs=x, outputs=e)p = m.predict(data_in)print(p.shape)print(p)
实际输出是:(数字是随机的)
(1, 4, 5)[[[ 0.02499047 0.04617121 0.01586803 0.0338897 0.009652 ] [ 0.04782704 -0.04035913 -0.0341589 0.03020919 -0.01157228] [ 0.00451764 -0.01433611 0.02606953 0.00328832 0.02650392] [ 0.00451764 -0.01433611 0.02606953 0.00328832 0.02650392]]]
然而,我以为输出会是:
[[[ 0.02499047 0.04617121 0.01586803 0.0338897 0.009652 ] [ 0.04782704 -0.04035913 -0.0341589 0.03020919 -0.01157228] [ 0 0 0 0 0] [ 0 0 0 0 0]]]
回答:
实际上,将Embedding层的mask_zero
设置为True
并不会返回零向量。相反,Embedding层的行为不会改变,它会返回索引为零的嵌入向量。你可以通过检查Embedding层的权重来确认这一点(即在你提到的示例中是m.layers[0].get_weights()
)。相反,它会影响后续层的行为,比如RNN层。
如果你查看Embedding层的源代码,你会看到一个名为compute_mask
的方法:
def compute_mask(self, inputs, mask=None): if not self.mask_zero: return None output_mask = K.not_equal(inputs, 0) return output_mask
这个输出掩码将作为mask
参数传递给支持掩码的后续层。这在基础层Layer
的__call__
方法中已实现:
# Handle mask propagation.previous_mask = _collect_previous_mask(inputs)user_kwargs = copy.copy(kwargs)if not is_all_none(previous_mask): # The previous layer generated a mask. if has_arg(self.call, 'mask'): if 'mask' not in kwargs: # If mask is explicitly passed to __call__, # we should override the default mask. kwargs['mask'] = previous_mask
这使得后续层忽略(即在计算中不考虑)这些输入步骤。这里是一个最小的示例:
data_in = np.array([ [1, 0, 2, 0]])x = Input(shape=(4,))e = Embedding(5, 5, mask_zero=True)(x)rnn = LSTM(3, return_sequences=True)(e)m = Model(inputs=x, outputs=rnn)m.predict(data_in)array([[[-0.00084503, -0.00413611, 0.00049972], [-0.00084503, -0.00413611, 0.00049972], [-0.00144554, -0.00115775, -0.00293898], [-0.00144554, -0.00115775, -0.00293898]]], dtype=float32)
如你所见,LSTM层的第二和第四时间步的输出分别与第一和第三时间步的输出相同。这意味着这些时间步已经被掩码了。
更新:在计算损失时也会考虑掩码,因为损失函数内部被增强以支持使用weighted_masked_objective
的掩码:
def weighted_masked_objective(fn): """Adds support for masking and sample-weighting to an objective function. It transforms an objective function `fn(y_true, y_pred)` into a sample-weighted, cost-masked objective function `fn(y_true, y_pred, weights, mask)`. # Arguments fn: The objective function to wrap, with signature `fn(y_true, y_pred)`. # Returns A function with signature `fn(y_true, y_pred, weights, mask)`. """
weighted_losses = [weighted_masked_objective(fn) for fn in loss_functions]
你可以使用以下示例来验证这一点:
data_in = np.array([[1, 2, 0, 0]])data_out = np.arange(12).reshape(1,4,3)x = Input(shape=(4,))e = Embedding(5, 5, mask_zero=True)(x)d = Dense(3)(e)m = Model(inputs=x, outputs=d)m.compile(loss='mse', optimizer='adam')preds = m.predict(data_in)loss = m.evaluate(data_in, data_out, verbose=0)print(preds)print('Computed Loss:', loss)[[[ 0.009682 0.02505393 -0.00632722] [ 0.01756451 0.05928303 0.0153951 ] [-0.00146054 -0.02064196 -0.04356086] [-0.00146054 -0.02064196 -0.04356086]]]Computed Loss: 9.041069030761719# verify that only the first two outputs # have been considered in the computation of lossprint(np.square(preds[0,0:2] - data_out[0,0:2]).mean())9.041070036475277