keras autoencoder “检查目标时出错”

我试图将Keras网站上的2D卷积自编码器示例调整为适合我自己的情况,我使用的是1D输入:https://blog.keras.io/building-autoencoders-in-keras.html

以下是我的代码:

from keras.layers import Input, Dense, Conv1D, MaxPooling1D, UpSampling1Dfrom keras.models import Modelfrom keras import backend as Kimport scipy as scipyimport numpy as np mat = scipy.io.loadmat('edata.mat')emat = mat['edata']input_img = Input(shape=(64,1))  # adapt this if using `channels_first` image data formatx = Conv1D(32, (9), activation='relu', padding='same')(input_img)x = MaxPooling1D((4), padding='same')(x)x = Conv1D(16, (9), activation='relu', padding='same')(x)x = MaxPooling1D((4), padding='same')(x)x = Conv1D(8, (9), activation='relu', padding='same')(x)encoded = MaxPooling1D(4, padding='same')(x)x = Conv1D(8, (9), activation='relu', padding='same')(encoded)x = UpSampling1D((4))(x)x = Conv1D(16, (9), activation='relu', padding='same')(x)x = UpSampling1D((4))(x)x = Conv1D(32, (9), activation='relu')(x)x = UpSampling1D((4))(x)decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)autoencoder = Model(input_img, decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')x_train = emat[:,0:80000]x_train = np.reshape(x_train, (x_train.shape[1], 64, 1))x_test = emat[:,80000:120000]x_test = np.reshape(x_test, (x_test.shape[1], 64, 1))from keras.callbacks import TensorBoardautoencoder.fit(x_train, x_train,                epochs=50,                batch_size=128,                shuffle=True,                validation_data=(x_test, x_test),                callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

然而,当我尝试运行autoencoder.fit()时,我收到了以下错误:

ValueError: 检查目标时出错:期望conv1d_165的形状为(None, 32, 1),但得到的数组形状为(80000, 64, 1)

我知道我设置层的时候可能做错了什么,我只是将maxpool和conv2d的大小改成了1D形式…我对Keras或自编码器的经验很少,有人能看出我哪里做错了么?

谢谢

编辑:在新的控制台上运行时,错误如下:

ValueError: 检查目标时出错:期望conv1d_7的形状为(None, 32, 1),但得到的数组形状为(80000, 64, 1)

以下是autoencoder.summary()的输出

Layer (type)                 Output Shape              Param #   =================================================================input_1 (InputLayer)         (None, 64, 1)             0         _________________________________________________________________conv1d_1 (Conv1D)            (None, 64, 32)            320       _________________________________________________________________max_pooling1d_1 (MaxPooling1 (None, 16, 32)            0         _________________________________________________________________conv1d_2 (Conv1D)            (None, 16, 16)            4624      _________________________________________________________________max_pooling1d_2 (MaxPooling1 (None, 4, 16)             0         _________________________________________________________________conv1d_3 (Conv1D)            (None, 4, 8)              1160      _________________________________________________________________max_pooling1d_3 (MaxPooling1 (None, 1, 8)              0         _________________________________________________________________conv1d_4 (Conv1D)            (None, 1, 8)              584       _________________________________________________________________up_sampling1d_1 (UpSampling1 (None, 4, 8)              0         _________________________________________________________________conv1d_5 (Conv1D)            (None, 4, 16)             1168      _________________________________________________________________up_sampling1d_2 (UpSampling1 (None, 16, 16)            0         _________________________________________________________________conv1d_6 (Conv1D)            (None, 8, 32)             4640      _________________________________________________________________up_sampling1d_3 (UpSampling1 (None, 32, 32)            0         _________________________________________________________________conv1d_7 (Conv1D)            (None, 32, 1)             289       =================================================================Total params: 12,785Trainable params: 12,785Non-trainable params: 0_________________________________________________________________

回答:

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注