keras autoencoder “检查目标时出错”

我试图将Keras网站上的2D卷积自编码器示例调整为适合我自己的情况,我使用的是1D输入:https://blog.keras.io/building-autoencoders-in-keras.html

以下是我的代码:

from keras.layers import Input, Dense, Conv1D, MaxPooling1D, UpSampling1Dfrom keras.models import Modelfrom keras import backend as Kimport scipy as scipyimport numpy as np mat = scipy.io.loadmat('edata.mat')emat = mat['edata']input_img = Input(shape=(64,1))  # adapt this if using `channels_first` image data formatx = Conv1D(32, (9), activation='relu', padding='same')(input_img)x = MaxPooling1D((4), padding='same')(x)x = Conv1D(16, (9), activation='relu', padding='same')(x)x = MaxPooling1D((4), padding='same')(x)x = Conv1D(8, (9), activation='relu', padding='same')(x)encoded = MaxPooling1D(4, padding='same')(x)x = Conv1D(8, (9), activation='relu', padding='same')(encoded)x = UpSampling1D((4))(x)x = Conv1D(16, (9), activation='relu', padding='same')(x)x = UpSampling1D((4))(x)x = Conv1D(32, (9), activation='relu')(x)x = UpSampling1D((4))(x)decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)autoencoder = Model(input_img, decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')x_train = emat[:,0:80000]x_train = np.reshape(x_train, (x_train.shape[1], 64, 1))x_test = emat[:,80000:120000]x_test = np.reshape(x_test, (x_test.shape[1], 64, 1))from keras.callbacks import TensorBoardautoencoder.fit(x_train, x_train,                epochs=50,                batch_size=128,                shuffle=True,                validation_data=(x_test, x_test),                callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

然而,当我尝试运行autoencoder.fit()时,我收到了以下错误:

ValueError: 检查目标时出错:期望conv1d_165的形状为(None, 32, 1),但得到的数组形状为(80000, 64, 1)

我知道我设置层的时候可能做错了什么,我只是将maxpool和conv2d的大小改成了1D形式…我对Keras或自编码器的经验很少,有人能看出我哪里做错了么?

谢谢

编辑:在新的控制台上运行时,错误如下:

ValueError: 检查目标时出错:期望conv1d_7的形状为(None, 32, 1),但得到的数组形状为(80000, 64, 1)

以下是autoencoder.summary()的输出

Layer (type)                 Output Shape              Param #   =================================================================input_1 (InputLayer)         (None, 64, 1)             0         _________________________________________________________________conv1d_1 (Conv1D)            (None, 64, 32)            320       _________________________________________________________________max_pooling1d_1 (MaxPooling1 (None, 16, 32)            0         _________________________________________________________________conv1d_2 (Conv1D)            (None, 16, 16)            4624      _________________________________________________________________max_pooling1d_2 (MaxPooling1 (None, 4, 16)             0         _________________________________________________________________conv1d_3 (Conv1D)            (None, 4, 8)              1160      _________________________________________________________________max_pooling1d_3 (MaxPooling1 (None, 1, 8)              0         _________________________________________________________________conv1d_4 (Conv1D)            (None, 1, 8)              584       _________________________________________________________________up_sampling1d_1 (UpSampling1 (None, 4, 8)              0         _________________________________________________________________conv1d_5 (Conv1D)            (None, 4, 16)             1168      _________________________________________________________________up_sampling1d_2 (UpSampling1 (None, 16, 16)            0         _________________________________________________________________conv1d_6 (Conv1D)            (None, 8, 32)             4640      _________________________________________________________________up_sampling1d_3 (UpSampling1 (None, 32, 32)            0         _________________________________________________________________conv1d_7 (Conv1D)            (None, 32, 1)             289       =================================================================Total params: 12,785Trainable params: 12,785Non-trainable params: 0_________________________________________________________________

回答:

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注